4
Tetrahedron
Chem. 2011, 286, 5727-5735. (c) Ainge, G. D.; Martin, W. J.;
Compton, B. J.; Hayman, C. M.; Larsen, D. S.; Yoon, S.-I.;
Wilson, I. A.; Harper, J. L.; Painter, G. F. J. Med. Chem. 2011, 54,
7268-7279.
A more complex pattern emerges in the in vivo biological
assessment. While acetamidopyranosides 9, 13, and 15 are still
inactive, protection of cytokine expression in mice is most
effective with 2.5 mg/kg of isopropyl-α-galactoside 17 (78%),
slightly surpassing isopropyl-β-galactoside 7 (64%), isopropyl-α-
glucoside 16 (69%) and cyclohexyl-α-glucoside 18 (64%).
Furthermore, cyclohexyl-β-glucoside 14 picks up moderate
protective activity. This slight discrepancy from the cell-based
biological activities is likely due to different rates of in vivo
absorption, metabolism and excretion of these compounds and
illustrates the importance of a multi-tiered assay strategy.
12. (a) Bowen, W. S.; Minns, L. A.; Johnson, D. A.; Mitchell, T. C.;
Hutton, M. M.; Evans, J. T. Sci. Signal. 2012, 5, ra13. (b) Dunn-
Siegrist, I.; Tissières, P.; Drifte, G.; Bauer, J.; Moutel S.; Pugin, J.
J. Biol. Chem. 2012, 287, 16121-16131. (c) Peri, F.; Marinzi, C.;
Barath, M.; Granucci, F.; Urbano, M.; Nicotra, F. Bioorg. Med.
Chem. 2006, 14, 190-199.
13. Neal, M. D.; Jia, H.; Eyer, B.; Good, M.; Guerriero, C. J.; Sodhi,
C. P.; Afrazi, A.; Prindle, T.; Ma, C.; Branca, M.; Ozolek, J.; L.,
B. J.; Wipf, P.; Hackam, D. J. PLoS One 2013, 8, e65779.
14. Wittmann, V.; Lennartz, D. Eur. J. Org. Chem. 2002, 1363-1367.
15. Debenham, J.; Rodebaugh, R.; Fraser-Reid, B. Ann. 1997, 791-
802.
In conclusion, we have established a viable synthetic strategy
to access configurationally diverse 2-acetamidopyranoside
derivatives and used a small set of analogs to establish a
preliminary SAR for our previous lead structure, TLR4 inhibitor
16 (C34). Thus, we were able to identify analogs that were
equipotent to 16 in cell-based models. Most significantly, we
also discovered an analog 17 that showed a significantly higher
efficacy in an in vivo rodent model of inflammatory disease.
Further characterization of the biological and therapeutic
potential of these inhibitors of cytokine release will be reported
in due course.
16. Lemieux, R. U.; Takeda, T.; Chung, B. Y. ACS Symp. Ser. 1977,
39, 90-115.
17. Debenham, J. S.; Madsen, R.; Roberts, C.; Fraser-Reid, B. J. Am.
Chem. Soc. 1995, 117, 3302-3303.
18. Castro-Palomino, J. C.; Schmidt, R. R. Tetrahedron Lett. 1995,
36, 5343-5346.
19. Shimizu, H.; Ito, Y.; Matsuzaki, Y.; Iijima, H.; Ogawa, T. Biosci.
Biotech. Biochem. 1996, 60, 73-76.
20. Meinjohanns, E.; Meldal, M.; Paulsen, H.; Bock, K. J. Chem. Soc.,
Perkin Trans. 1 1995, 405-415.
21. Jensen, K. J.; Hansen, P. R.; Venugopal, D.; Barany, G. J. Am.
Chem. Soc. 1996, 118, 3148-3155.
22. Wolfrom, M. L.; Bhat, H. B. J. Org. Chem. 1967, 32, 1821-1823.
23. Blatter, G.; Beau, J.-M.; Jacquinet, J.-C. Carbohydr. Res. 1994,
260, 189-202.
Acknowledgments
24. zu Reckendorf, W. M.; Wassiliadou-Micheli, N. Chem. Ber. 1970,
103, 1792-1796.
The authors thank Mr. Pete Chambers and Ms. Taber Lewis
for QC analyses by LCMS, and the University of Pittsburgh
Technology Commercialization Consortium (TCC) and the NIH
(NS081744 and DK79307) for financial support of this work.
25. Imoto, M.; Yoshimura, H.; Shimamoto, T.; Sakaguchi, N.;
Kusumoto, S.; Shiba, T. Bull. Chem. Soc. Jpn. 1987, 60, 2205-
2214.
26. Paulsen, H.; Krogmann, C. Ann. 1989, 1203-1213.
27. Ellervik, U.; Magnusson, G. Carbohydr. Res. 1996, 280, 251-260.
28. Dullenkopf, W.; Castro-Palomino, J. C.; Manzoni, L.; Schmidt, R.
R. Carbohydr. Res. 1996, 296, 135-147.
References and notes
29. Castro-Palomino, J. C.; Schmidt R. R. Tetrahedron Lett. 1995, 36,
6871-6874.
30. Aly, M. R. E.; Castro-Palomino, J. C.; Ibrahim, E.-S. I.; El-Ashry,
E.-S. H.; Schmidt, R. R. Eur. J. Org. Chem. 1998, 2305-2316.
31. Castro-Palomino, J. C.; Schmidt, R. R. Tetrahedron Lett. 2000,
41, 629-632.
1. Filice, M.; Palomo, J. M. RSC Advances 2012, 2, 1729-1742.
2. Wang, Z.; Du, J.; Che, P.-L.; Meledeo, M. A.; Yarema, K. J. Curr.
Opin. Chem. Biol. 2009, 12, 565-572.
3. Weymouth-Wilson, A. C. Nat. Prod. Rep. 1997, 14, 99-110.
4. Banoub, J.; Boullanger, P.; Lafont, D. Chem. Rev. 1992, 92, 1167-
1195.
32. Lemieux, R. U.; Ratcliffe, R. M. Can. J. Chem. 1979, 57, 1244-
1251.
5. Herzner, H.; Reipen, T.; Schultz, M.; Kunz, H. Chem. Rev. 2000,
100, 4495-4538.
33. Paulsen, H. Angew. Chem. Int. Ed. Engl. 1982, 21, 155-173.
34. Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem.
1994, 50, 21-123.
6. Anderson, J. W.; Nicolosi, R. J.; Borzelleca, J. F. Food Chem.
Tox. 2005, 43, 187-201.
35. Griffith, D. A.; Danishefsky, S. J. J. Am. Chem. Soc. 1990, 112,
5811-5819.
7. Darley-Usmar, V. M.; Ball, L. E.; Chatham, J. C. J. Mol. Cell.
Cardiol. 2012, 52, 538-549.
36. Dahl, R. S.; Finney, N. S. J. Am. Chem. Soc. 2004, 126, 8356-
8357.
37. Eyer, B. R., MS Thesis, University of Pittsburgh, 2013.
38. Traar, P.; Belaj, F.; Francesconi, K. A. Austr. J. Chem. 2004, 57,
1051-1053.
8. Paraskar, A. S.; Soni, S.; Chin, K. T.; Chaudhuri, P.; Muto, K. W.;
Berkowitz, J.; Handlogten, M. W.; Alves, N. J.; Bilgicer, B.;
Dinulescu, D. M.; Mashelkar, R. A.; Sengupta, S. Proc. Nat.
Acad. Sci. USA 2010, 107, 12435-12440.
9. (a) Connolly, D. J.; O’Neill, L. A. J. Curr. Opin. Pharmacol.
2012, 12, 510-518. (b) Neve, J. E.; Wijesekera, H. P.; Duffy, S.;
Jenkins, I. D.; Ripper, J. A.; Teague, S. J.; Campitelli, M.;
Garavelas, A.; Nikolapoulos, G.; Le, P. V.; De A. Leone, P.;
Pham, N. B.; Shelton, P.; Fraser, N.; Carroll, A. R.; Avery, V. M.;
Mccrae, C.; Williams, N.; Quinn, R. J. J. Med. Chem. 2014, 57,
1252-1275. (c) Peri, F.; Calabrese, V. J. Med. Chem. 2014, 57,
3612-3622.
39. Knapp, S.; Huhn, R. A.; Amorelli, B. Org. Synth. 2007, 84, 68-76.
40. Nakabayashi, S.; Warren, C. D.; Jeanloz, R. W. Carbohydr. Res.
1986, 150, c7-c10.
41. Norberg, O.; Deng, L.; Aastrup, T.; Yan, M.; Ramström, O. Anal.
Chem. 2010, 83, 1000-1007.
42. Routenberg Love, K.; Andrade, R. B.; Seeberger, P. H. J. Org.
Chem. 2001, 66, 8165-8176.
43. Srivastava, V. K. Carbohydr. Res. 1982, 103, 286-292.
44. Hesek, D.; Suvorov, M.; Morio, K-i.; Lee, M.; Brown, S.;
Vakulenko, S. B.; Mobashery, S. J. Org. Chem. 2004, 69, 778-
784.
10. (a) Bazin, H. G.; Murray, T. J.; Bowen, W. S.; Mozaffarian, A.;
Fling, S. P.; Bess, L. S.; Livesay, M. T.; Arnold, J. S.; Johnson, C.
L.; Ryter, K. T.; Cluff, C. W.; Evans, J. T.; Johnson, D. A. Bioorg.
Med. Chem. Lett. 2008, 18, 5350-5354. (b) Artner, D.; Oblak, A.;
Ittig, S.; Garate, J. A.; Horvat, S.; Arrieumerlou, C.; Hofinger, A.;
Oostenbrink, C.; Jerala, R.; Kosma, P.; Zamyatina, A. ACS Chem.
Biol. 2013, 8, 2423-2432.
45. Instant JChem was used for physicochemical property
calculations; Instant JChem 6.2, 2014, ChemAxon
(http://www.chemaxon.com).
46. Takeda, R.; Ryu, S. Y.; Park, J. H.; Nakanishi, K. Tetrahedron
1990, 46, 5533-5542.
11. (a) Stöver, A. G.; Da Silva Correia, J.; Evans, J. T.; Cluff, C. W.;
Elliot, M. W.; Jeffery, E. W.; Johnson, D. A.; Lacy, M. J.;
Baldridge, J. R.; Probst, P.; Ulevitch, R. J.; Persing, D. H.;
Hershberg, R. M. J. Biol. Chem. 2004, 279, 4440-4449. (b) Lee,
K.-H.; Liu, Y.-J.; Biswas, A.; Ogawa, C.; Kobayashi, K. S. J. Biol.
47. Eyer, B. R. MS Thesis, University of Pittsburgh, 2013.
48. For a detailed description of assay conditions, see the
Supplementary Material.