UPDATES
An Efficient Palladium-Catalyzed Synthesis of Cinnamyl Ethers
R. D. Dura, S. G. Nelson, J. Am. Chem. Soc. 2010, 132,
11875–11877; c) H. Kobayashi, B. Driessen, D. J. G. P.
van Osch, A. Talla, S. Ookawara, T. Noꢃl, V. Hessel,
Tetrahedron 2013, 69, 2885–2890.
provided the normal allyl aryl ether product in 61%
yield.
The wider applicability of aryl bromides is undis-
puted in cross-coupling reactions, whereas few results
have been described for the MH reaction of aryl bro-
mides with allyl ethers.[9c,e] We were pleased to note
that under our optimized reaction conditions aryl bro-
mides also reacted with phenols and allyl chloride
albeit with increasing catalyst loading and reaction
temperature to provide the desired products in mod-
erate yields (Scheme 5). Fortunately, less active heter-
oaryl bromides such as 2-bromothiophene also gave
55% yield.
In summary, we have developed a new and highly
efficient palladium-catalyzed one-pot reaction for the
preparation of cinnamyl ethers from aryl halides, phe-
nols, and allyl chloride. The reaction shows good
regio- and stereoselectivities when electron-rich phe-
nols and aryl iodides were used. Steric effects seem
very weak since phenols having substituents in the
ortho position reacted well. Moreover, the catalytic
system also gives moderate yields with the less active
aryl bromides.
[2] a) F. X. Talamꢄs, D. B. Smith, A. Cervantes, F. Franco,
S. T. Cutler, D. G. Loughhead, D. J. Morgans, R. J. Wei-
kert, Tetrahedron Lett. 1997, 38, 4725–4728; b) P. Wipf,
D. L. Waller, J. T. Reeves, J. Org. Chem. 2005, 70,
8096–8102; c) S. L. Hou, X. Y. Li, J. X. Xu, J. Org.
Chem. 2012, 77, 10856–10869.
[3] a) T. Nishikata, B. H. Lipshutz, J. Am. Chem. Soc.
2009, 131, 12103–12105; b) R. Moser, T. Nishikata,
B. H. Lipshutz, Org. Lett. 2010, 12, 28–31; c) S. Hajra,
D. Sinha, J. Org. Chem. 2011, 76, 7334–7340; d) T.
Mino, T. Kogure, T. Abe, T. Koizumi, T. Fujita, M. Sa-
kamoto, Eur. J. Org. Chem. 2013, 1501–1505.
[4] a) G. Liu, Z. L. Xin, Z. H. Pei, J. M. Trevillyan, M. R.
Jirousek, J. Med. Chem. 2003, 46, 4232–4235; b) P. Sau-
erberg, J. P. Morgensen, L. Jeppesen, L. A. Svensson, J.
Fleckner, J. Nehlin, E. M. Wulff, I. Pettersson, Bioorg.
Med. Chem. 2005, 15, 1497–1500; c) P. Sauerberg, J. P.
Morgensen, L. Jeppesen, P. S. Bury, J. Fleckner, G. S.
Olsen, C. B. Jeppesen, E. M. Wulff, P. Piheras, M. Hav-
ranek, Z. Polivka, I. Pettersson, Bioorg. Med. Chem.
Lett. 2007, 17, 3198–3202; d) A. Holmgren, M. Norg-
ren, L. M. Zhang, G. Hernriksson, Phytochemistry
2009, 70, 147–155.
[5] a) F. K. L. Claisen, F. Roth, E. Tietze, Justus Liebigs
Ann. Chem. 1925, 442, 210–245; b) E. T. L. Claisen,
Ber. dtsch. chem. Ges. 1926, 59B, 2344–2351.
[6] a) T. Satoh, M. Ikeda, M. Miura, J. Org. Chem. 1997,
62, 4877–4879; b) Y. Kayaki, T. Koda, T. Ikariya, J.
Org. Chem. 2004, 69, 2595–2597.
[7] a) F.-X. Felpin, Y. Landais, J. Org. Chem. 2005, 70,
6441–6446; b) F. L. Lam, T. T. Au-Yeung, F. Y. Kwong,
Z. Y. Zhou, K. Y. Wong, A. S. C. Chan, Angew. Chem.
2008, 120, 1300–1303; Angew. Chem. Int. Ed. 2008, 47,
1280–1283.
[8] a) C. Goux, M. Massacret, P. Lhoste, D. Sinou, Organo-
metallics 1995, 14, 4585–4593; b) R. Akiyama, S. Ko-
bayashi, J. Am. Chem. Soc. 2003, 125, 3412–3413.
[9] a) K. Ono, K. Fugami, S. Tanaka, Y. Tamaru, Tetrahe-
dron Lett. 1994, 35, 4133–4136; b) F. Berthiol, H.
Doucet, M. Santelli, Eur. J. Org. Chem. 2005, 1367–
1377; c) I. Ambrogio, G. Fabrizi, S. Cacchi, S. T. Hen-
riksen, P. Fristrup, D. Tanner, P. Norrby, Organometal-
lics 2008, 27, 3187–3195; d) D. L. Pan, A. J. Chen, Y. J.
Su, W. Zhou, S. Li, W. Jia, J. Xiao, Q. J. Liu, L. R.
Zhang, N. Jiao, Angew. Chem. 2008, 120, 4807–4810;
Angew. Chem. Int. Ed. 2008, 47, 4729–4732; e) T. Mino,
H. Shindo, T. Kaneda, T. Koizumi, Y. Kasashima, M.
Sakamoto, T. Fujita, Tetrahedron Lett. 2009, 50, 5358–
5360.
Experimental Section
General Procedure for the Synthesis of Cinnamyl
Ethers
Phenol (141 mg, 1.5 mmol), K3PO4 (739 mg, 3.5 mmol), and
TBAB (322 mg, 1 mmol) were added into a dried Schlenk
tube with a magnetic stirrer bar, which was subjected to
evacuation/flushing with dry argon five times, and then allyl
chloride (125 mL, 1.5 mmol) and DMA (4 mL) were added
successively into it. The reaction mixture was heated in
1008C for 4 h. After the reaction mixture had cooled to
room temperature, iodobenzene (112 mL, 1 mmol) and the
solution of [PdACHTUNGTRENNUNG(COD)Cl2] (100 mL, 0.005 mmol) in DMA
(1 mL) were added. The reaction temperature was raised to
1008C. After being stirred for 16 h, the mixture was diluted
with ethyl acetate (3ꢂ5 mL) and water (5 mL). The organic
layer was washed with brine (3ꢂ5 mL), dried with anhy-
drous MgSO4, and concentrated under vacuum. The residue
was purified by silica gel chromatography (petroleum ether)
to give the product 3a.
Acknowledgements
[10] W. Wang, Q. Yang, R. Zhou, H. Y. Fu, R. X. Li, H.
Chen, X. J. Li, J. Organomet. Chem. 2012, 697, 1–5.
[11] a) W. Kleist, S. S. Prçckl, K. Kçhler, Catal. Lett. 2008,
125, 197–200; b) F. Amoroso, S. Colussi, A. Del Zotto,
J. Llorca, A. Trovarelli, Catal. Commun. 2011, 12, 563–
567.
[12] a) F. Zhao, M. Shirai, Y. Ikushima, M. Arai, J. Mol.
Catal. A: Chem. 2002, 180, 211–219; b) S. S. Prçckl, W.
Kleist, M. A. Gruber, K. Kçhler, Angew. Chem. 2004,
We gratefully acknowledge support from the Natural Science
Foundation of China (No. 21202104).
References
[1] a) C. J. Davis, T. E. Hurst, A. M. Jacob, C. J. Moody, J.
Org. Chem. 2005, 70, 4414–4422; b) M. E. Geherty,
Adv. Synth. Catal. 2014, 356, 616 – 622
ꢁ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
621