ACS Catalysis
Research Article
Scheme 7. Plausible Catalytic Cycle
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Dedicated to Professor Youngkyu Do (KAIST) for his
honorable retirement. This work was supported by the Institute
for Basic Science (IBS-R10-D1) in Korea. We thank Dr. Jeung
Gon Kim and Dr. Amit B. Pawar for valuable discussions.
REFERENCES
■
(1) Selected reviews on C−H activations: (a) Colby, D. A.; Bergman,
R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624−655. (b) McMurray, L.;
O’Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885−1898.
(c) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40,
5068−5083. (d) White, M. C. Science 2012, 335, 807−809.
(e) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012,
112, 5879−5918. (f) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012,
41, 3651−3678. (g) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc.
Chem. Res. 2012, 45, 788−802. (h) Hartwig, J. F. Acc. Chem. Res. 2012,
45, 864−873. (i) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012,
45, 936−946. (j) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew.
Chem., Int. Ed. 2012, 51, 8960−9009. (k) Rouquet, G.; Chatani, N.
Angew. Chem., Int. Ed. 2013, 52, 11726−11743. (l) Pan, S.; Shibata, T.
CoCp*(CO)I2 precursor with AgSbF6 additive will generate a
cationic Co(III) species (I) with the dissociation of CO, which
can facilitate the key C−H bond cleavage to afford the five-
membered metallacyclic intermediate II.22 The observation
described above that the dimeric cobalt complex [CoCp*I2]2
showed only slightly lower catalytic reactivity in comparison to
CoCp*(CO)I2 (Table 1, entry 11) suggests that the carbonyl
(CO) ligand is not essential for high activity in the present
cobalt catalyst system. Coordination of an amidating reagent to
II is assumed to follow leading to III,6a and then insertion of a
carbamido moiety will take place to afford Co(III) amido
species V presumably via IV with the release of acetic acid.15
However, a pathway involving the intermediacy of a Co(V)
nitrenoid species can also be plausible leading to V.23 Finally,
protonolysis of V will deliver the desired product (3a) with the
concomitant regeneration of I. On the other hand, an
alternative order of C−H bond cleavage cannot be completely
ruled out, in which a cationic cobalt species (I) coordinates to
an amidating reagent first to form a cobalt amide complex that
then reacts with a substrate, leading to a metallacyclic
intermediate.
ACS Catal. 2013, 3, 704−712. (m) Kuhl, N.; Schroder, N.; Glorius, F.
̈
Adv. Synth. Catal. 2014, 356, 1443−1460.
(2) Selected reviews on C−H aminations: (a) Collet, F.; Dodd, R.
H.; Dauban, P. Chem. Commun. 2009, 5061−5074. (b) Collet, F.;
Lescot, C.; Dauban, P. Chem. Soc. Rev. 2011, 40, 1926−1936.
(c) Ramirez, T. A.; Zhao, B.; Shi, Y. Chem. Soc. Rev. 2012, 41, 931−
942. (d) Jeffrey, J. L.; Sarpong, R. Chem. Sci. 2013, 4, 4092−4106.
(3) Selected example on Pd-catalyzed direct C−H amination: (a) Ng,
K.-H.; Chan, A. S. C.; Yu, W.-Y. J. Am. Chem. Soc. 2010, 132, 12862−
12864. (b) Liu, X.-Y.; Gao, P.; Shen, Y.-W.; Liang, Y.-M. Org. Lett.
2011, 13, 4196−4199. (c) Xiao, B.; Gong, T.-J.; Xu, J.; Liu, Z.-J.; Liu,
L. J. Am. Chem. Soc. 2011, 133, 1466−1474. (d) Sun, K.; Li, Y.; Xiong,
T.; Zhang, J.; Zhang, Q. J. Am. Chem. Soc. 2011, 133, 1694−1697.
(e) Yoo, E. J.; Ma, S.; Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q. J. Am. Chem.
Soc. 2011, 133, 7652−7655.
(4) Selected example on Rh-catalyzed direct C−H amination:
(a) Grohmann, C.; Wang, H.; Glorius, F. Org. Lett. 2012, 14, 656−
659. (b) Ng, K.-H.; Zhou, Z.; Yu, W.-Y. Org. Lett. 2012, 14, 272−275.
(c) Shi, J.; Zhou, B.; Yang, Y.; Li, Y. Org. Biomol. Chem. 2012, 10,
8953−8955. (d) Zhao, H.; Shang, Y.; Su, W. Org. Lett. 2013, 15,
5106−5109. (e) Tang, R.-J.; Luo, C.-P.; Yang, L.; Li, C.-J. Adv. Synth.
Catal. 2013, 355, 869−873. (f) Ng, K.-H.; Zhou, Z.; Yu, W.-Y. Chem.
Commun. 2013, 49, 7031−7033. (g) Zhou, B.; Du, J.; Yang, Y.; Feng,
H.; Li, Y. Org. Lett. 2013, 15, 6302−6305. (h) Zhou, B.; Yang, Y.; Shi,
J.; Feng, H.; Li, Y. Chem.−Eur. J. 2013, 19, 10511−10515. (i) Wang,
H.; Yu, Y.; Hong, X.; Tan, Q.; Xu, B. J. Org. Chem. 2014, 79, 3279−
3288. (j) Zhou, B.; Du, J.; Yang, Y.; Feng, H.; Li, Y. Org. Lett. 2014, 16,
592−595.
(5) (a) Harvey, M.; Musaev, D. G.; Du Bois, J. J. Am. Chem. Soc.
2011, 133, 17207−17216. (b) Yadav, M. R.; Rit, R. K.; Sahoo, A. K.
Org. Lett. 2013, 15, 1638−1641. (c) Kim, J.; Kim, J.; Chang, S. Chem.−
Eur. J. 2013, 19, 7328−7333. (d) Thirunavukkarasu, V. S.;
Raghuvanshi, K.; Ackermann, L. Org. Lett. 2013, 15, 3286−3289.
(e) Shang, M.; Zeng, S.-H.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. Org. Lett.
2013, 15, 5286−5289.
CONCLUSION
■
In summary, we have developed the direct C−H amidation of
arenes using acetoxycarbamates as a new and convenient amino
source with a cobalt catalyst system. This amidation does not
require external oxidants or bases and releases acetic acid as a
readily removable byproduct. A range of arenes, including 6-
arylpurines, was selectively amidated with high efficiency and
excellent functional group compatibility. Various types of
synthetically versatile N-carbamates could be also accessed by
the present cobalt-catalyzed protocol.
ASSOCIATED CONTENT
* Supporting Information
The following file is available free of charge on the ACS
■
(6) (a) Kim, H.; Shin, K.; Chang, S. J. Am. Chem. Soc. 2014, 136,
5904−5907. (b) Pan, C.; Jin, N.; Zhang, H.; Han, J.; Zhu, C. J. Org.
Chem. 2014, 79, 9427−9432.
(7) (a) Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H.; Chang,
S. J. Am. Chem. Soc. 2012, 134, 9110−9113. (b) Ryu, J.; Shin, K.; Park,
S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904−
S
General experimental procedures, characterization de-
1
tails, and H and 13C NMR spectra of new compounds
857
ACS Catal. 2015, 5, 853−858