Page 9 of 11
Journal of the American Chemical Society
Substituent Effects on Reactivity and Cycloaddition Scope.
K. N. Houk: 0000-0002-8387-5261
J. Am. Chem. Soc. 2011, 133, 12285-12292. b) Zhang, J.;
Shukla, V.; Boger, D. L., Inverse Electron Demand Diels–
Alder Reactions of Heterocyclic Azadienes, 1-Aza-1,3-
Butadienes, Cyclopropenone Ketals, and Related Systems.
A Retrospective. J. Org. Chem. 2019, 84, 9397-9445.
15. Kamber, D. N.; Liang, Y.; Blizzard, R. J.; Liu, F.; Mehl, R.
A.; Houk, K. N.; Prescher, J. A. 1,2,4-Triazines Are
Versatile Bioorthogonal Reagents. J. Am. Chem. Soc. 2015,
137, 8388-8391.
16. Liu, F.; Liang, Y.; Houk, K. N. Bioorthogonal
Cycloadditions: Computational Analysis with the
Distortion/Interaction Model and Predictions of Reactivities.
Acc. Chem. Res. 2017, 50, 2297-2308.
17. Matthias, B. F.; Houk, K. N. Analyzing Reaction Rates with
the Distortion/Interaction‐Activation Strain Model. Angew.
Chem. Int. Ed. 2017, 56, 10070-10086.
18. Neunhoeffer, H.; Werner, G. Cycloadditionen mit
Azabenzolen, VII1) Reaktion von Pyrimidinen mit N,N-
Diäthyl-1-propinylamin. Liebigs Ann. Chem. 1974, 1190-
1194.
1
2
3
4
5
6
7
8
N. Blanchard: 0000-0002-3097-0548
Notes
CS and TF are Team Leader and CEO (respectively) of
Spirochem, a Swiss CRO company selling the building
blocks leading to compounds 45-48.
9
ACKNOWLEDGMENT
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The authors acknowledge funding from the Université de
Haute-Alsace, the Université de Strasbourg and the CNRS
(VLF, VB, NB), the Ecole Polytechnique (VG), Nanjing
Agricultural University for setup package (FL) and the US
National Science Foundation (CHE-1764328 to KNH).
19. van der Plas, H. C. in Advances in Heterocyclic Chemistry
Vol. Volume 84 (ed R. Katritzky Alan) 31-70 (Academic
Press, 2003).
20. van der Plas, H. C. Thirty years of pyrimidine chemistry in
the laboratory of organic chemistry at the Wageningen
Agricultural University, The Netherlands (review). Chem.
Heterocycl. Compd. 1994, 30, 1427-1443.
REFERENCES
1. Ishihara, K.; Sakakura, A. in Comprehensive Organic
Synthesis II (Second Edition) (ed Paul Knochel) 351-408
(Elsevier, 2014).
2. Ishihara, K.; Sakakura, A. in Comprehensive Organic
Synthesis II (Second Edition) (ed Paul Knochel) 409-465
(Elsevier, 2014).
3. Boger, D. L. Diels-alder reactions of azadienes. Tetrahedron
1983, 39, 2869-2939.
4. Boger, D. L. Diels-Alder reactions of heterocyclic aza
dienes. Scope and applications. Chem. Rev. 1986, 86, 781-
793.
5. Foster, R. A. A.; Willis, M. C. Tandem inverse-electron-
demand hetero-/retro-Diels-Alder reactions for aromatic
nitrogen heterocycle synthesis. Chem. Soc. Rev. 2013, 42,
63-76.
6. Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the
Structural Diversity, Substitution Patterns, and Frequency of
Nitrogen Heterocycles among U.S. FDA Approved
Pharmaceuticals. J. Med. Chem. 2014, 57, 10257-10274.
7. Pennington, L. D.; Moustakas, D. T. The Necessary
Nitrogen Atom: A Versatile High-Impact Design Element
for Multiparameter Optimization. J. Med. Chem. 2017, 60,
3552-3579.
8. Cao, M.-H.; Green, N. J.; Xu, S.-Z. Application of the aza-
Diels-Alder reaction in the synthesis of natural products.
Org. Biomol. Chem. 2017, 15, 3105-3129.
9. Yang, Y.-F.; Liang, Y.; Liu, F.; Houk, K. N. Diels–Alder
Reactivities of Benzene, Pyridine, and Di-, Tri-, and
Tetrazines: The Roles of Geometrical Distortions and
Orbital Interactions. J. Am. Chem. Soc. 2016, 138, 1660-
1667.
10. Oliveira, B. L.; Guo, Z.; Bernardes, G. J. L. Inverse electron
demand Diels–Alder reactions in chemical biology. Chem.
Soc. Rev. 2017, 46, 4895-4950.
11. Oller‐Salvia, B.; Kym, G.; Chin, J. W. Rapid and Efficient
Generation of Stable Antibody–Drug Conjugates via an
Encoded Cyclopropene and an Inverse‐Electron‐Demand
Diels–Alder Reaction. Angew. Chem. Int. Ed. 2018, 57,
2831-2834.
12. Neumann, K.; Gambardella, A.; Bradley, M. The Emerging
Role of Tetrazines in Drug-Activation Chemistries.
Chembiochem 2019, 20, 872-876.
13. Glinkerman, C. M.; Boger, D. L. Catalysis of Heterocyclic
Azadiene Cycloaddition Reactions by Solvent Hydrogen
Bonding: Concise Total Synthesis of Methoxatin. J. Am.
Chem. Soc. 2016, 138, 12408-12413.
21. Martin,
J.
C.
Synthesis
of
pyridines
from
dicyanopyrimidines. A Diels-Alder approach to the C-ring
of streptonigrin. J. Heterocyclic Chem. 1980, 17, 1111-
1112.
22. Neunhoeffer, H.; Lehmann, B. Cycloadditionen mit
Azabenzolen, VIII1) Reaktionen von Dimethylamino- und
Methoxypyrimidinen
mit
Acetylendicarbonsäure-
dimethylester. Liebigs Ann. Chem. 1975, 1113-1119.
23. Marcelis, A. T. M.; van der Plas, H. C. Ring transformations
of heterocycles with nucleophiles. 33. Cycloadditions of 5-
nitropyrimidines with ynamines. Formation of 3-
nitropyridines,
N-5-pyrimidyl-alpha-carbamoylnitrones,
and 2,2a-dihydroazeto[2,3-d]-3,5-diazocines. J. Org. Chem.
1986, 51, 67-71.
24. Shao, B. Synthesis of fused bicyclic pyridines with
microwave-assisted intramolecular hetero-Diels–Alder
cycloaddition of acetylenic pyrimidines. Tetrahedron Lett.
2005, 46, 3423-3427.
25. Martin, R. E.; Morawitz, F.; Kuratli, C.; Alker, A. M.;
Alanine, A. I. Synthesis of Annulated Pyridines by
Intramolecular Inverse-Electron-Demand Hetero-Diels–
Alder Reaction under Superheated Continuous Flow
Conditions. Eur. J. Org. Chem. 2012, 47-52.
26. Duret, G.; Le Fouler, V.; Bisseret, P.; Bizet, V.; Blanchard,
N. Diels–Alder and Formal Diels–Alder Cycloaddition
Reactions of Ynamines and Ynamides. Eur. J. Org. Chem.
2017, 6816-6830.
27. Aggarwal, R.; Kumar, S. 5-Aminopyrazole as precursor in
design and synthesis of fused pyrazoloazines. Beilstein J.
Org. Chem. 2018, 14, 203-242.
28. Follmann, M.; Griebenow, N.; Hahn, M. G.; Hartung, I.;
Mais, F. J.; Mittendorf, J.; Schäfer, M.; Schirok, H.; Stasch,
J. P.; Stoll, F.; Straub, A. The Chemistry and Biology of
Soluble Guanylate Cyclase Stimulators and Activators.
Angew. Chem. Int. Ed. 2013, 52, 9442-9462.
29. Follmann, M.; Ackerstaff, J.; Redlich, G.; Wunder, F.; Lang,
D.; Kern, A.; Fey, P.; Griebenow, N.; Kroh, W.; Becker-
Pelster, E.-M.; Kretschmer, A.; Geiss, V.; Li, V.; Straub, A.;
Mittendorf, J.; Jautelat, R.; Schirok, H.; Schlemmer, K.-H.;
Lustig, K.; Gerisch, M.; Knorr, A.; Tinel, H.; Mondritzki, T.;
Trübel, H.; Sandner, P.; Stasch, J.-P. Discovery of the
Soluble Guanylate Cyclase Stimulator Vericiguat (BAY
14. a) Anderson, E. D.; Boger, D. L. Inverse Electron Demand
Diels–Alder Reactions of 1,2,3-Triazines: Pronounced
ACS Paragon Plus Environment