Communication
ChemComm
10 (a) R. C. Petterson and A. Wambsgans, J. Am. Chem. Soc., 1964,
86, 1648; (b) J. C. Martin and P. D. Bartlett, J. Am. Chem. Soc., 1957,
79, 2533; (c) H. W. Johnson and D. E. Bublitz, J. Am. Chem. Soc.,
1958, 80, 3150; (d) P. S. Skell and J. C. Day, Acc. Chem. Res., 1978,
11, 381; (e) Y. L. Chow and Y. M. A. Naguib, Rev. Chem. Intermed.,
1984, 5, 325; ( f ) U. Lu¨ning and P. S. Skell, Tetrahedron, 1985,
41, 4289; (g) J. C. Day, N. Govindaraj, D. S. McBain, P. S. Skell and
J. M. Tanko, J. Org. Chem., 1986, 51, 4959.
11 (a) H. Kim and C. Lee, Angew. Chem., Int. Ed., 2012, 51, 12303;
(b) J. D. Nguyen, E. M. D’Amato, J. M. R. Narayanam and
C. R. J. Stephenson, Nat. Chem., 2012, 4, 854. For selected reviews
on visible light photocatalysis, see: (c) J. M. R. Narayanam and
C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102; (d) J. Xuan and
W. J. Xiao, Angew. Chem., Int. Ed., 2012, 51, 6828; (e) C. K. Prier,
D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322;
( f ) D. M. Schultz and T. P. Yoon, Science, 2014, 343, 1239176.
12 For visible light photocatalytic generation of nitrogen-radicals, see:
scission of the N–Cl bond using a visible light photoredox
catalyst. The present imidation method is operationally simple
and can be conducted on a gram scale using only inexpensive,
commercially available reagents with very low catalyst loading.
It is expected that this unique method representing an alter-
native mode of arene C–H activation will be of broad utility in
the preparation of aromatic amines.
This research was supported by the Basic Science Research
(2013R1A1A2018730), the Basic Research Laboratory (2010-
0019766) and the GPF (2011–0006901 for HK) Programs of the
National Research Foundation (NRF) funded by the Ministry of
Science, ICT and Future Planning of Korea.
¨
(a) G. Cecere, C. M. Konig, J. L. Alleva and D. W. C. MacMillan, J. Am.
Chem. Soc., 2013, 135, 11521; (b) J. Xuan, B.-J. Li, Z.-J. Feng,
G.-D. Sun, H.-H. Ma, Z.-W. Yuan, J.-R. Chen, L.-Q. Lu and
W.-J. Xiao, Chem. – Asian J., 2013, 8, 1090.
Notes and references
1 For reviews, see: (a) A. R. Dick and M. S. Sanford, Tetrahedron, 2006,
62, 2439; (b) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 13 During the preparation of this paper, two examples were published,
´
110, 1147; (c) S. H. Cho, J. Y. Kim, J. Kwak and S. Chang, Chem. Soc.
Rev., 2011, 40, 5068; (d) A. E. Wendlandt, A. M. Suess and S. S. Stahl,
Angew. Chem., Int. Ed., 2011, 50, 11062; (e) I. P. Beletskaya and
see: (a) K. Foo, E. Sella, I. Thome, M. D. Eastgate and P. S. Baran,
J. Am. Chem. Soc., 2014, 136, 5279; (b) L. J. Allen, P. J. Cabrera, M. Lee
and M. S. Sanford, J. Am. Chem. Soc., 2014, 136, 5607.
A. V. Cheprakov, Organometallics, 2012, 31, 7753; ( f ) G. Dequirez, 14 (a) F. Minisci and R. Galli, Tetrahedron Lett., 1965, 6, 1679;
V. Pons and P. Dauban, Angew. Chem., Int. Ed., 2012, 51, 7384;
(g) G. Y. Song, F. Wang and X. W. Li, Chem. Soc. Rev., 2012, 41, 3651.
2 For recent examples, see: (a) J. Y. Kim, S. H. Park, J. Ryu, S. H. Cho,
(b) F. Minisci, R. Galli and M. Cecere, Tetrahedron Lett., 1965,
6, 4663; (c) A. Citterio, A. Gentile, F. Minisci, V. Navarrini,
M. Serravalle and S. Ventura, J. Org. Chem., 1984, 49, 4479.
S. H. Kim and S. Chang, J. Am. Chem. Soc., 2012, 134, 9110; 15 (a) H. Zimmer and L. F. Audrieth, J. Am. Chem. Soc., 1954, 76, 3856;
(b) K.-H. Ng, Z. Zhou and W.-Y. Yu, Org. Lett., 2012, 14, 272;
(c) C. Grohmann, H. Wang and F. Glorius, Org. Lett., 2012,
(b) Y. L. Zhong, H. Zhou, D. R. Gauthier, J. Lee, D. Askin,
U. H. Dolling and R. P. Volante, Tetrahedron Lett., 2005, 46, 1099.
14, 656; (d) M. Shang, S. H. Zeng, S. Z. Sun, H. X. Dai and 16 (a) B. R. Cowley and W. A. Waters, J. Chem. Soc., 1961, 1228;
J. Q. Yu, Org. Lett., 2013, 15, 5286; (e) L. D. Tran, J. Roane and
O. Daugulis, Angew. Chem., Int. Ed., 2013, 52, 6043; ( f ) T. Matsubara,
(b) D. Mackay and W. A. Waters, J. Chem. Soc. C, 1966, 813;
(c) A. Good and J. C. J. Thynne, J. Chem. Soc. B, 1967, 684.
S. Asako, L. Ilies and E. Nakamura, J. Am. Chem. Soc., 2014, 136, 646; 17 (a) J. Lind, X. H. Shen, T. E. Eriksen, G. Merenyi and L. Eberson,
(g) M. Shang, S.-Z. Sun, H.-X. Dai and J.-Q. Yu, J. Am. Chem. Soc.,
2014, 136, 3354.
J. Am. Chem. Soc., 1991, 113, 4629; (b) D. I. Pattison, R. J. O’Reilly,
O. Skaff, L. Radom, R. F. Anderson and M. J. Davies, Chem. Res.
Toxicol., 2011, 24, 371; (c) R. J. O’Reilly, A. Karton and L. Radom,
J. Phys. Chem. A, 2013, 117, 460.
´
´
3 For selected examples, see: (a) M. M. Dıaz-Requejo, T. R. Belderraın,
´
M. C. Nicasio, S. Trofimenko and P. J. Perez, J. Am. Chem. Soc., 2003,
125, 12078; (b) Z. Li, D. A. Capretto, R. O. Rahaman and C. He, J. Am. 18 (a) A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky,
Chem. Soc., 2007, 129, 12058.
4 (a) H. Togo, Y. Hoshina, T. Muraki, H. Nakayama and M. Yokoyama,
J. Org. Chem., 1998, 63, 5193; (b) A. P. Antonchick, R. Samanta,
I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, J. Am. Chem. Soc.,
2003, 125, 7377; (b) L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura
and F. Barigelletti, Top. Curr. Chem., 2007, 281, 143.
K. Kulikov and J. Lategahn, Angew. Chem., Int. Ed., 2011, 50, 8605; 19 M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal,
(c) H. J. Kim, J. Kim, S. H. Cho and S. Chang, J. Am. Chem. Soc., 2011, G. G. Malliaras and S. Bernhard, Chem. Mater., 2005, 17, 5712.
133, 16382; (d) A. A. Kantak, S. Potavathri, R. A. Barham, 20 Although the role of an acid additive remains unclear, awaiting
K. M. Romano and B. DeBoef, J. Am. Chem. Soc., 2011, 133, 19960.
5 R. Shrestha, P. Mukherjee, Y. Tan, Z. C. Litman and J. F. Hartwig,
J. Am. Chem. Soc., 2013, 135, 8480.
6 G. B. Boursalian, M.-Y. Ngai, K. N. Hojczyk and T. Ritter, J. Am.
Chem. Soc., 2013, 135, 13278.
further studies, the reactions without an acid suffer from incom-
plete conversion (ca. 80%, 24 h).
21 Similarly to electrophilic aromatic substitution reactions, the KIE
value was measured to be kH/kD = 1.13. For the detailed information,
see the ESI†. Also see, ref. 7b, 8c and 9.
7 For reviews, see: (a) R. S. Neale, Synthesis, 1971, 1; (b) F. Minisci, 22 The ameliorating effect of the acid additive was consistently
Synthesis, 1973, 1; (c) W. C. Danen and F. A. Neugebauer, Angew.
Chem., Int. Ed. Engl., 1975, 14, 783; (d) P. Mackiewicz and R. Furstoss,
Tetrahedron, 1978, 34, 3241; (e) L. Stella, Angew. Chem., Int. Ed. Engl.,
1983, 22, 337; ( f ) S. Z. Zard, Chem. Soc. Rev., 2008, 37, 1603.
observed in the reactions of several arenes. For example, in the
absence of an acid, 4, 9, 10, and 17 were formed in 34%, 31%, 31%,
and 17% yields, respectively.
23 C. K. Ingold and M. S. Smith, J. Chem. Soc., 1938, 905.
8 (a) H. Bock and K.-L. Kompa, Angew. Chem., Int. Ed. Engl., 1965, 24 However, a small amount of the product derived from benzylic
4, 783; (b) H. Bock and K.-L. Kompa, Chem. Ber., 1966, 99, 1347;
(c) J. C. Day, M. G. Katsaros, W. D. Kocher, A. E. Scott and P. S. Skell,
J. Am. Chem. Soc., 1978, 100, 1950.
chlorination was detected from the reaction of pentamethyl-
benzene.
25 For details of the reaction of 1,3,5-trimethoxybenzene, see ESI†.
9 (a) R. A. Lidgett, E. R. Lynch and E. B. McCall, J. Chem. Soc., 1965, 26 Similar observations have been made: ref. 11a and D. A. DiRocco,
3754; (b) J. I. G. Cadogan and A. G. Rowley, J. Chem. Soc., Perkin
Trans. 1, 1975, 1069.
K. Dykstra, S. Krska, P. Vachal, D. V. Conway and M. Tudge, Angew.
Chem., Int. Ed., 2014, 53, 4802.
9276 | Chem. Commun., 2014, 50, 9273--9276
This journal is ©The Royal Society of Chemistry 2014