4038
M.-L. Bennasar et al. / Tetrahedron Letters 46 (2005) 4035–4038
G. J. J. Chem. Soc., Perkin Trans. 1 2002, 2763–2793; For
the dark at reflux temperature for 4 h. The solvent was
removed and the resulting residue was treated with 8:2
Et2O–CH2Cl2. The precipitate was filtered and the filtrate
concentrated under reduced pressure. The crude reaction
mixture was analysed by H NMR and then purified by
flash chromatography (hexane–AcOEt) to give the pure
enamide.
more recent work, see: (b) Yan, T.-H.; Chien, C.-T.; Tsai,
C.-C.; Lin, K.-W.; Wu, Y.-H. Org. Lett. 2004, 6, 4965–
4967.
1
9. Pine, S. H.; Pettit, R. J.; Geib, G. D.; Cruz, S. G.; Gallego,
C. H.; Tijerina, T.; Pine, R. D. J. Org. Chem. 1985, 50,
1212–1216.
10. Okazoe, T.; Takai, K.; Oshima, K.; Utimoto, K. J. Org.
Chem. 1987, 52, 4410–4412.
11. Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112,
6392–6394.
18. An analogous mechanism had been proposed to justify the
formation of titanium enolates in the reaction of acid
chlorides with the Tebbe reagent: Cannizo, L. F.; Grubbs,
R. H. J. Org. Chem. 1985, 50, 2316–2323.
12. For a recent example, see: Cook, M. J.; Fleming, D. W.;
Gallagher, T. Tetrahedron Lett. 2005, 46, 297–300.
13. See inter alia: (a) Fujimura, O.; Fu, G. C.; Grubbs, R. H.
J. Org. Chem. 1994, 59, 4029–4031; (b) Nicolaou, K. C.;
Postema, M. H. D.; Claiborne, C. F. J. Am. Chem. Soc.
1996, 118, 1565–1566; (c) Nicolaou, K. C.; Postema, M.
H. D.; Yue, E. W.; Nadin, A. J. Am. Chem. Soc. 1996,
118, 10335–10336; (d) Clark, J. S.; Kettle, J. G. Tetrahe-
dron Lett. 1999, 55, 8231–8248; (e) Rainier, J. D.; Allwein,
S. P.; Cox, J. M. J. Org. Chem. 2001, 66, 1380–1386; (f)
Postema, M. H. D.; Piper, J. L.; Betts, R. S. J. Org. Chem.
2005, 70, 829–836.
19. (a) Organ, M. G.; Xu, J.; NÕZemba, B. Tetrahedron Lett.
2002, 43, 8177–8180; (b) Nicolaou, K. C.; Roecker, A. J.;
Pfefferkorn, J.-A.; Cao, G.-Q. J. Am. Chem. Soc. 2000,
122, 2966–2967.
20. Enamide 11b: 1H NMR (CDCl3, 300 MHz) d 2.07 (d,
J = 0.8 Hz, 3H), 3.29 (d, J = 6.2Hz, 2H), 3.65 (s, 3H), 4.52
(s, 1H), 4.68 (q, J = 1.2Hz, 1H), 5.06 (m, 1H), 5.13 (m,
1H), 5.88 (m, 1H), 7.12(m, 1H), 7.20–7.30 (m, 3H); 13C
NMR (CDCl3, 75.4 MHz) d 21.8, 35.2, 52.9, 106.4, 116.4,
127.0, 127.7, 128.7, 130.0, 135.9, 137.7, 139.8, 144.1, 154.6;
HRMS calcd for C14H17NO2 + H: 231.1259. Found:
231.1338.
14. Petasis, N. A.; Lu, S.-P. Tetrahedron Lett. 1995, 36, 2393–
2396.
15. For a recent example of olefination of tertiary amides with
Takeda reagents, see: Takeda, T.; Saito, J.; Tsubouchi, A.
Tetrahedron Lett. 2003, 44, 5571–5574.
21. General procedure for the RCM step: a solution of the
appropriate enamide 11 (1 mmol) and the Grubbs catalyst
18 (0.06 mmol) in anhydrous toluene was stirred at 80 °C
under Ar for 4 h. The reaction mixture was concentrated.
The resulting residue was purified by flash chromatogra-
phy (SiO2, 9:1 hexane–AcOEt) to give the pure 1,4-
dihydroquinoline 13.
16. (a) Herdeis, C.; Heller, E. Tetrahedron: Asymmetry 1993,
4, 2085–2094; (b) Herdeis, C.; Heller, E. Tetrahedron:
´
Asymmetry 1997, 8, 1115–1121; (c) Martınez, I.; Howell,
22. 1,4-Dihydroquinoline 13b: 1H NMR (CDCl3, 300 MHz) d
2.17 (m, 3H), 3.15 (d, J = 4.8 Hz, 2H), 3.80 (s, 3H), 5.52
(tq, J = 1, 1, 1, 4.8, 4.8 Hz, 1H), 7.10 (m, 2H), 7.20 (m,
1H), 7.57 (d, J = 7.6 Hz, 1H); 13C NMR (CDCl3,
75.4 MHz) d 20.1, 28.3, 52.9, 116.5, 124.3, 125.0, 125.5,
126.8, 133.0, 138.1, 139.2, 154.0.
23. For a conceptually different approach to the quinoline
system using titanium reagents, see: Macleod, C.; Austin,
C. A.; Hamprecht, D. W.; Hartley, R. C. Tetrahedron
Lett. 2004, 45, 8879–8882.
A. R. Tetrahedron Lett. 2000, 41, 5607–5611; (d) Tehrani,
K. A.; De Kimpe, N. Tetrahedron Lett. 2000, 41, 1975–
1978; (e) Langlois, N. Org. Lett. 2002, 4, 185–187.
17. General procedure for the dimethyltitanocene methylen-
ation (conditions B): a solution of freshly prepared11
Cp2TiMe2 (1 mmol) in anhydrous toluene–pyridine
(100:1, 6 mL) was added under Ar to a solution of the
appropriate amide (0.67 mmol) in anhydrous toluene
(1 mL) at rt, and the resulting mixture was stirred in