May 1998
SYNLETT
503
(19) Excoffier, G.; Gagnaire, D.; Utille, J.-P. Carbohydr. Res. 1975, 39, 368-
application of this method to other 2-deoxyglycoside syntheses, for
instance, 2,6- and 2,3-dideoxy- and 2,3,6-trideoxy-glycoside synthesis,
etc., should be successful as well.
373.
(20) Eby, R.; Schuerch, C. Carbohydr. Res. 1974, 34, 79-80; Bernet, B.;
Vasella, A. Helv. Chem. Acta 1979, 62, 1990-2016.
(21) Küster, J.M.; Dyong, I. Liebigs Ann. Chem. 1975, 2179-2189.
Acknowledgement. This work was supported by the Deutsche
Forschungsgemeinschft, the Deutscher Akademischer Austauschdienst,
and the Fonds der Chemischen Industrie. – J.C. C.-P. is grateful for a
DAAD stipend.
(22) General procedure for the glycosylation reactions: A mixture of 4a or
4b (0.25 mmol) and 7 or 8 (0.225 mmol) and molecular sieves (3 Å, 200
mg) in dry CH2Cl2 (10 mL) was stirred under argon at room temperature
for 20 min; then the mixture was cooled to 0 oC and trimethylsilyl
trifluoromethanesulfonate (0.05 mmol) added. After stirring at room
temperature for 2 h, triethylamine (25 µL) was added, the mixture was
diluted with CH2Cl2 (20 mL), filtered, and concentrated. Silica gel
column chromatography with hexane/ethyl acetate, 2:1 as eluent gave
glycosides 9α,β and 10α,β.
References and Notes
(1) Wright, D.E. Tetrahedron 1979, 35, 1207-1237.
(2) Thiem, J.; Klaffke, W. Top. Curr. Chem. 1990, 154, 285-332; Schmidt,
R.R. in Comprehensive Organic Synthesis, Vol.
6 (Trost, B.M.;
Fleming, I.; Winterfeld, E., Eds.), Pergamon Press, Oxford 1991, pp. 33-
64; Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503-1531; Schmidt,
R.R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21-123;
Bilodeon, M.T.; Danishefsky, S.J. in Modern Methods in Carbohydrate
Synthesis (s. Khan, H., O'Neill, R.A., Eds.) Harwood Academic
Publishers, Amsterdam, 1996, pp. 171-193.
(23) General procedure for the deoxygenation reactions: To a solution of
9α,β or 10α,β (0.42 mmol) in toluene (5 mL) was added
tributylstannane (0.69 mmol) and catalytic amounts of
azoisobutyronitrile under argon. The mixture was heated to 110 oC
under argon for 3 h and then the solvent was evaporated. Column
chromatography on silica gel of the residue with toluene/acetone, 3:1 as
eluent afforded disaccharides 11α,β and 12α,β.
(3) Garegg, P.J.; Köpper, S.; Thiem, J. J. Carbohydr. Chem. 1986, 5, 59-65;
Müller, T.; Schneider, R.; Schmidt, R.R. Tetrahedron Lett. 1994, 35,
4763-4766.
(24) 4a: [α]D +18o ( c 1, CHCl3). 1H NMR (250 MHz, CDCl3): δ 3.70 - 4.30
(m, 4 H, 5-H, 6a-H, 6b-H, 3-H), 4.50-5.00 (m, 7 H, 3 CH2Ph, 4-H), 5.77
(d, 1 H, J1,2 = J2,3 < 1 Hz, 2-H), 6.45 (d, 1 H, J1,2 < 1 Hz, 1-H), 7.20-
(4) Lemieux, R.U.; Levine, S. Can. J. Chem. 1964, 42, 1473-1476;
Lemieux, R.U.; Morgan, A.R. Can. J. Chem. 1965, 43, 2190-2193.
8.10 (m, 20 H, Ar), 8.71 (s, 1 H, NH). 4b: [α]D +22o (c 1, CHCl3). 1
H
NMR (250 MHz, CDCl3): δ 3.75-4.40 (m, 4 H, 5-H, 6a-H, 6b-H, 3-H),
4.50-5.00 (m, 7 H, 2 CH2Ph), 4-H), 5.80 (d, 1 H J1,2 = J2,3 = 9.1 Hz, 2-
H), 6.21 (d, 1 H, J1,2 = 9.1 Hz, 1-H), 7.20-8.10 (m, 20 H, Ar), 8.60 (s, 1
H, NH).
(5) Tatsuta, K.; Fujimoto, K.; Kinoshita, M.; Umezawa, S. Carbohydr. Res.
1977, 54, 85-104.
(6) Thiem, J.; Karl, H.; Schwentner, H. Synthesis 1978, 696-698; Thiem J.;
Karl, H. Tetrahedron Lett. 1978, 4999-5002.
9α: [α]D +26o . 1H NMR (600 MHz, CDCl3): δ 3.34 (s, 3 H, OCH3),
(7) Jaurand, G.; Beau, J.-M.; Sinaÿ, P. J. Chem. Soc., Chem. Commun.
3.52 (dd, 1 H, J3,4 = J4,5 = 9.2 Hz, 4a-H), 3.61 (dd, 1 H, J1,2 = 1.2, J2,3
=
1981, 572-573; Perez, M.; Beau, J.-M. Tetrahedron Lett. 1989, 30, 75-
9,5 Hz, 2a-H), 3.69 (m, 2 H, 6b-H, 6b'-H), 3.77 (m, 3 H, 5a-H, 4b-H, 6a-
H), 3.90 (m, 1 H, 5b-H), 4.04 (dd, 1 H, J2,3 = 9.5, J3,4 = 9.2 Hz, 3a-H),
4.10 (m, 2 H, 3b-H, 6a'-H), 4.64 (d, 1 H, J1,2 = 1.2 Hz, 1a-H), 4.49-5.06
(m, 12 H, 6 CH2-Ph), 5.06 (d, 1 H, J1,2 < 1 Hz, 1b-H), 5.67 (dd, 1 H, J1,2
= J2,3 < 1 Hz, 2b-H), 7.18-8.09 (m, 35 H, 7 Ph).- 9β: [α]D +13o (c 1,
CHCl3). 1H NMR (600 MHz, CDCl3): d 3.35 (s, 3 H, OMe), 3.55 (dd, 1
H, J3,4 = J4,5 = 9.1 Hz, 4a-H), 3.61 (dd, 1 H, J1,2 = 1.2, J2,3 = 9.5 Hz, 2a-
H), 3.67 (m, 2 H, 6b-H, 6'b-H), 3.72 (m, 3 H, 5a-H, 4b-H, 6a-H), 3.88
(m, 1 H, 5b-H), 4.00 (dd, 1 H, J2,3 = 9.5, J3,4 = 9.2 Hz, 3a-H), 4.15 (m, 2
H, 3b-H, 6'a-H), 4.67 (d, 1 H, J1,2 = 1.2 Hz, 1a-H), 4.49-5.06 (m, 12 H, 6
78.
(8) Fogh, A.; Lundt, I.; Pedersen, C.; Rasmussen, P. Acta Chem. Scand. Ser.
B 1977, 31, 765-770; Bock, K.; Lundt, I., Pedersen, C. Carbohydr. Res.
1981, 90, 7-16; 1984, 130, 125-134; Thiem, J.; Gerken, M. J.
Carbohydr. Chem. 1983, 1, 229-249; Thiem, J.; Gerken, M.; Bock, K.
Liebigs Ann. Chem. 1983, 462-470.
(9) Ito, Y.; Ogawa, T. Tetrahedron Lett. 1987, 28, 2723-2726.
(10) Preuss, R.; Schmidt, R.R. Synthesis 1988, 694-697.
(11) For other approaches with 2-phenylthio groups: Nicolaou, K.C.,
Ladduwahetty, T.; Randall, J.L.; Chuchulowski, A. J. Am. Chem. Soc.
1986, 108, 2466-2467; Nicolaou, K.C.; Hummel, C.W.; Bockovich,
N.J.; Wong, C.-H. J. Chem. Soc., Chem. Commun. 1991, 870-874;
Zuurmond, H.M.; van der Klein, P.A.M.; van der Marel, G.A.; van
Boom, J.H. Tetrahedron Lett. 1992, 33, 2063-2066.
CH2Ph), 5.10 (d, 1 H, J1,2 = 9.1 Hz, 1b-H), 5.69 (dd, 1 H, J1,2 = J2,3
=
9.1 Hz, 2b-H), 7.18-8.09 (m, 35 H, Ph).
o
c 1, CHCl ). 1H NMR (600 MHz, CDCl ): δ 3.37 (s, 3
10α: [α]D +18 (
3
3
H, OMe), 3.59 (m, 2 H, 6a-H, 6'a-H), 3.73 (m, 1 H, 6b-H), 3.84 (m, 1 H,
6'b-H), 3.93 (m, 1 H, 5a-H), 3.99 (dd, 1 H, J1,2 = 1.3, J2,3 = 8.8 Hz, 2a-
H), 4.03 (m, 1 H, 4b-H), 4.19 (m, 1 H, 3b-H), 4.25 (m, 3 H, 3a-H, 4b-H,
5b-H), 4.44-4.96 (m, 12 H, 6 CH2Ph), 4.76 (d. J1,2 = 1.3 Hz, 1a-H), 5.27
(d, 1 H, J1,2 < 1 Hz, 1b-H), 5.51 (dd, 1 H, J1,2 = J2,3 < 1 Hz, 2b-H), 7.18-
8.09 (m, 35 H, Ph). 9β: [α]D +10o (c 1, CHCl3). 1H NMR (600 MHz,
CDCl3): δ = 3.40 (s, 3 H, OMe), 3.61 (m, 2 H, 6a-H, 6'a-H), 3.70 (m, 1
(12) Trumtel, M.; Tavecchia, P.; Veyrières, A; Sinaÿ, P. Carbohydr. Res.
1989, 191, 29-52.
(13) Castro-Palomino, J.C.; Tsvetkov, Y.E.; Schneider, R.; Schmidt, R.R.
Tetrahedron Lett. 1997, 38, 6837-6840; Castro-Palomino, J.C.;
Schmidt, R.R., manuscript in preparation; Castro-Palomino, J.C.
Dissertation, Univ. Konstanz, 1998.
H, 6b-H), 3.81 (m, 1 H, 6'b-H), 3.90 (m, 1 H, 5a-H), 4.01 (dd, 1 H, J1,2
=
1.3, J2,3 = 8.8 Hz, 2a-H), 4.03 (m, 1 H, 4b-H), 4.19 (m, 1 H, 3b-H), 4.25
(m, 3 H, 3a-H, 4b-H, 5b-H), 4.44-4.96 (m, 12 H, 6 CH2Ph), 4.73 (d, J1,2
(14)
A thiocarbonyloxy moiety was claimed to support 2-deoxy-β-
= 1.4 Hz, 1a-H), 5.22 (d, 1 H, J1,2 = 9.1 Hz, 1b-H), 5.53 (dd, 1 H, J1,2
2,3 = 9.1 Hz, 2b-H), 7.18-8.09 (m, 35 H, Ph).
Compounds 11α,5 11β,12 and 12β12 have been previously synthesized
and the 1H NMR data are in accordance with the reported values. – 12α:
[α]D +16o (c 1, CHCl3) 1H NMR (600 MHz, CDCl3): δ = 1.69 (ddd, 1
H, J1,2 < 1, J2ax,2eq = 11.2, J2ax,3 = 11.4 Hz, 2bax-H), 2.06 (ddd, 1 H,
=
ribonucleoside formation via a six-membered intermediate; yet, still
both anomers were obtained: Mukaiyama, T.; Hirano, N.; Nishida, M.;
Uchiro, H. Chem. Lett. 1996, 99-100.
J
(15) Barton, H.R.D.; McCombie, W.S.; J. Chem. Soc., Perkin Trans 1 1975,
1574-1585.
(16) Zuurmond, H.M.; van der Klein, P.A.M.; van der Marel, G.A.; van
J
1,2 < 1, J2eq,2ax = 11.2, J2eq,3 = 1.6 Hz, 2beq-H), 3.31 (s, 3 H, OCH3),
3.56 (m, 3 H, 6a-H, 6a'-H, 6b-H), 3.66 (m, 2 H, 6b'-H, 4b-H), 3.88 (m, 2
H, 2a-H, 5a-H), 3.98 (m, 3 H, 3b-H, 5b-H, 4a-H), 4.12 (dd, 1 H, J3,2
3,4 = 3a-H), 4.33-4.85 (m, 12 H, 6 CH2Ph), 4.68 (d, 1 H, J1,2 = 1.8 Hz,
1a-H), 5.10 (d, 1 H, J1,2 < 1 Hz, 1b-H), 7.12-7.31 (m, 30 H, 6 Ph).
Boom, J.H. Tetrahedron Lett. 1992, 33, 2063-2066.
(17) Ponpipom, M.M. Carbohydr. Res. 1977, 59, 311-317.
=
(18) Ogawa, T.; Sugimoto, M.; Kitajima, T.; Sadozai, K.K.; Nukada, T.
J
Tetrahedron Lett. 1986, 27, 5739-5742.