C O M M U N I C A T I O N S
Scheme 2. 2 + 2 Condensation Reactionsa
and substitution reactions. This opens a new access to formylpor-
phyrins under either mildly acidic or basic reaction conditions and
offers the potential to prepare all possible homologues and
regioisomers of poly-meso-formylporphyrins. Currently, we are
optimizing the reactions described herein and trying to develop
methods for the deprotection of 6 and 7. Additionally, the possibility
to use derivatives of 1 as photocleavable linkers in supramolecular
multiporphyrin systems exists, as the photolytic cleavage of
dithianyl derivatives has been described.20
Acknowledgment. We thank the DFG (Se543/6-2 and /5-2) for
their generous financial support and Bernd Lu¨bcke for technical
assistance.
a Conditions: (a) CH2Cl2, 5-phenyldipyrromethane, catalytic TFA, 16
h, rt; then DDQ, 45 min, 10 3%, 12 2%. (b) CH2Cl2, benzaldehyde, catalytic
TFA, 16 h, rt; then DDQ, 45 min, 10 2%, 12 4%. (c) CH2Cl2, DDQ,
BF3‚OEt2, rt, 10 min, 97%.
Supporting Information Available: Selected experimental pro-
cedures and compound characterization data (PDF) and full crystal-
lographic data for 12 (CIF-file). This material is available free of charge
Scheme 3. Synthesis of Formylporphyrins via SNAr Reactionsa
References
(1) (a) Vicente, M. G. H. In The Porphyrin Handbook; Kadish, K. M., Smith,
K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 1, pp
149-199. (b) Burrell, A. K.; Officer, D. L.; Plieger, P. G.; Reid, D. C.
W. Chem. ReV. 2001, 101, 2751-2796. (c) Senge, M. O.; Kalisch, W.
W.; Bischoff, I. Chem. Eur. J. 2000, 6, 2721-2738.
(2) Fuhrhop, J.-H. In The Porphyrins; Dolphin, D., Ed.; Academic Press: New
York, 1978; Vol. 1, pp 131-159. Johnson, A. W.; Oldfield, D. J. Chem.
Soc. C 1966, 794-798.
(3) Smith, K. M.; Bisset, G. M. F.; Tabba, H. D. J. Chem. Soc., Perkin Trans.
1 1982, 581-585.
(4) Classic formylation reactions would result in the formation of product
mixtures: Morgan, A. R.; Rampersaud, A.; Garbo, G. M.; Keck, R. W.;
Selman, S. H. J. Med. Chem. 1989, 32, 904-908. Torpin, J. W.; Ortiz de
Montellano, P. R. J. Org. Chem. 1995, 60, 2195-2199.
(5) Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231-237.
(6) Lee, H. B.; Balasubramanian, S. J. Org. Chem. 1999, 64, 3454-3460.
Cuevas, G.; Juaristi, E. J. Am. Chem. Soc. 2002, 124, 13088-13096.
(7) For use of 4-(1,3-dithiolan-2-yl)pyrrole for â-formylporphyrins, see:
Fumoto, Y.; Uno, H.; Murashima, T.; Ono, N. Heterocycles 2000, 54,
705-720.
(8) Meyers, A. I.; Strickland, R. C. J. Org. Chem. 1972, 37, 2579-2583.
(9) Lindsey, J. S. In The Porphyrin Handbook; Kadish, K. M., Smith, K. M.,
Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 1, pp 45-
118.
(10) Reaction conditions modified from: (a) Littler, B. J.; Ciringh, Y.; Lindsey,
J. S. J. Org. Chem. 1999, 64, 2864-2872. (b) Hatscher S.; Senge MO.
Tetrahedron Lett. 2003, 44, 157-160.
(11) Sturaro, A.; Traldi, P. Org. Mass Spectrom. 1986, 21, 335-341.
(12) 5,10,15,20-Tetraalkylporphyrins with similar steric bulk have been shown
to undergo atypical side reactions.13 Additionally, all dithianyl-containing
porphyrins showed significant line broadening for the â-protons neighbor-
ing these groups, indicating hindered rotation. A single-crystal X-ray
structure determination of 12 shows the S-S vector in each dithianyl
residue to be orthogonal to the mean plane of the macrocycle ( 91.3°).
The macrocycle exhibits a minor waV distortion and some core elongation.
(13) Ema, T.; Senge, M. O.; Nelson, N. Y.; Ogoshi, H.; Smith, K. M. Angew.
Chem., Int. Ed. Engl. 1994, 33, 1879-1881. Senge, M. O.; Bischoff, I.;
Nelson, N. Y.; Smith, K. M. J. Porphyrins Phthalocyanines 1999, 3, 99-
116.
(14) During preparation of the manuscript, the synthesis of 11 and related
systems using acetal groups via multistep syntheses was reported:
Balakumar, A.; Muthukumaran, K.; Lindsey, J. S. J. Org. Chem. 2004,
69, 5112-5115.
(15) Shi, X.-X.; Khanapure, S. P.; Rokach, J. Tetrahedron Lett. 1996, 37, 4331-
4334. Hori, N.; Matsukura, H.; Matsuo, G.; Nakata, T. Tetrahedron Lett.
1999, 40, 2811-2814. Mondal, E.; Bose, G.; Khan, A. T. Synlett 2001,
6, 785-786.
a Conditions: (a) n-BuLi, THF, -40 °C, 2 h, 100%. (b) THF, -78 °C,
TMED, 15 min; then rt, H2O, 15 min; then DDQ, rt, 15 min, 15a 54%,
15b 47%, 15c 53%, 15d 4%, 15e 50%, 15f 10%. (c) CH2Cl2, DDQ, then
BF3‚OEt2, rt, 45 min, 96-100%.
mixtures. A variety of different oxidants were tested with 5, and
reproducibleresultswereobtainedsofaronlywithbis(trifluoroacetoxy)-
iodobenzene.16b17 Use of 4 equiv at 50 °C or 8 equiv at room
temperature resulted in formation of the monoformylporphyrin 818
in 60% yield, while 4 equiv gave the dimethoxy derivative 9.
Second, a potentially more useful strategy involves direct use
of the lithio derivative of 1 as a nucleophile for the substitution of
porphyrins. We have shown that various alkyl and aryllithium
reagents can be used for the direct meso substitution of unactivated
porphyrins in high yield.1c These reactions are regioselective and
may be used for the substitution of all four meso positions, allowing
the synthesis of ABCD porphyrins. Indeed, conversion of 1 into
the lithio nucleophile and reaction with either NiII or free base
porphyrins gave promising results.
As shown in Scheme 3, both meso aryl or alkyl NiII porphyrins
and 5,15-diphenylporphyrin 14b could be substituted in about 50%
yield (unoptimized). Substitution of other free bases (e.g., 14d19
and 14f) is possible but requires further optimization. All respective
formylporphyrins 16, including the free bases, were easily obtained
with DDQ/BF3‚OEt2 in quantitative yield.
(16) (a) Collman, J. P.; Tyvoll, D. A.; Chng, L. L.; Fish, H. T. J. Org. Chem.
1995, 60, 1926-1931. (b) Stork, G.; Zhao, K. Tetrahedron Lett. 1989,
30, 287-290.
(17) Most oxidants, ammonia salts, or reductants gave no reaction at all; DDQ
resulted in degradation.
(18) Schlo¨zer, R.; Fuhrhop, J.-H. Angew. Chem., Int. Ed. Engl. 1975, 14, 363-
364.
(19) Wiehe, A.; Simonenko, E. J., Senge, M. O.; Ro¨der, B. J. Porphyrins
Phthalocyanines 2001, 5, 758-761.
(20) Mitkin, O. D.; Wan, Y., Kurchan, A. N.; Kutateladze, A. G. Synthesis
2001, 8, 1133-1142.
In conclusion, we have shown the dithianyl residue to be a
convenient synthon in porphyrin chemistry, both for condensation
JA045223U
9
J. AM. CHEM. SOC. VOL. 126, NO. 42, 2004 13635