Arnold and McManus
1247
3
3J5ax–6eq = 5.5 Hz, J5eq–6eq = 5.5 Hz, equatorial H of methy-
77(35), 79(27), 91(36), 93(36), 107(31), 121(78), 128(37),
129(50), 135(30), 141(41), 211(30), 213(50), 256(100). X-
ray data: see footnote 3.
lene group on ring (6eq-H)), 2.93 (dd, 1H, 3J4ax–5ax = 8.5 Hz,
3J4ax–5eq = 3.7 Hz, CH group, methoxy-substituted (4ax-H)),
3
3.37 (s, 3H, OCH3), 3.43 (d, 2H, J7–38 = 7.3 Hz, CH2 group,
aryl-substituted (8-H)), 5.20 (t, 1H, J7–8 = 7.3 Hz, vinyl H
3
3
(7-H)), 7.27 (d, 2H, J2′–3′ = 8.5 Hz, J5′–6′ = 8.5 Hz, H’s ad-
jacent to alkyl-substituted aryl carbon (2′-H, 6′-H)), 7.56 (d,
This work was supported by grants from the Natural Sci-
ences and Engineering Research Council of Canada. We
thank Dr. D.L. Hooper, Atlantic Region Magnetic Reso-
nance Centre at Dalhousie University, for help in the prepa-
ration of the manuscript, Dr. T.S. Cameron, Dalhousie
University, for the X-ray crystal structure of 18a, and Dr.
T.B. Grindley and Dr. M.S.W. Chan, Dalhousie University,
for assistance with the molecular mechanics calculations.
We also wish to thank Dr. D. Klapstein, St. Francis Xavier
University, for the photoelectron spectra of 1.
3
3
2H, J2′–3′ = 8.5 Hz, J5′–6′ = 8.5 Hz, H’s adjacent to cyano-
substituted aryl carbon (3′-H, 5′-H)); 13C nmr (62.90 MHz,
CDCl3), δ: 21.61 (q), 25.00 (t), 25.78 (t), 27.52 (q), 33.87
(t), 37.17 (s), 47.93 (t, CH2, aryl-substituted), 57.52 (q,
OCH3), 85.91 (d, CH, methoxy-substituted), 109.59 (s, qua-
ternary aryl carbon, cyano-substituted), 119.18 (s, CN),
120.12 (d, vinyl CH), 129.08 (d, aromatic CH adjacent to
alkyl-substituted aryl carbon), 132.22 (d, aromatic CH adja-
cent to cyano-substituted carbon), 138.77 (s), 147.53 (s);
MS, m/z: 55(27), 67(26), 71(25), 77(22), 79(23), 93(34),
116(55), 121(83), 154(44), 167(23), 180(22), 194(64),
195(24), 237(100). Anal. calcd. for C18H23NO: C 80.26, H
8.61, N 5.20; found: C 79.90, H 8.78, N 4.91.
1. (a) D.R. Arnold and M.S. Snow. Can. J. Chem. 66, 3012
(1988); (b) D.R. Arnold and X. Du. J. Am. Chem. Soc. 111,
7666 (1989); (c) X. Du, D.R. Arnold, R.J. Boyd, and Z. Shi.
Can. J. Chem. 69, 1365 (1991); (d) K. McMahon and D.R. Ar-
nold. Can. J. Chem. 71, 450 (1993); (e) D.A. Connor, D.R. Ar-
nold, P.K. Bakshi, and T.S. Cameron. Can. J. Chem. 73, 762
(1995); (f) D.R. Arnold, X. Du, and H.J.P. de Lijser. Can. J.
Chem. 73, 522 (1995); (g) D.R Arnold, D.A. Connor, K.A.
McManus, P.K. Bakshi, and T.S. Cameron. Can. J. Chem. 74,
602 (1996); (h) H.J.P. de Lijser, T.S. Cameron, and D.R. Ar-
nold. Can. J. Chem. 75, 1795 (1997); (i) M.S.W. Chan and
D.R. Arnold. Can. J. Chem. 75, 1810 (1997); (j) D.R. Arnold,
K.A. McManus, and M.S.W. Chan. Can. J. Chem. 75, 1055
(1997); (k) H.J.P. de Lijser and D.R. Arnold. J. Org. Chem. 62,
8432 (1997); (l) J. Phys. Chem. 100, 3996 (1996).
2. (a) K.A. McManus and D.R. Arnold. Can. J. Chem. 73, 2158
(1995); (b) D.R. Arnold, M.S.W. Chan, and K.A. McManus.
Can. J. Chem. 74, 2143 (1996); (c) K.A. McManus and D.R.
Arnold. Can. J. Chem. 72, 2291 (1994); (d) D.R. Arnold, K.A.
McManus, and X. Du. Can. J. Chem. 72, 415 (1994); (e) D.R.
Arnold and X. Du. Can. J. Chem. 72, 403 (1994).
3. (a) C.S.Q. Lew, J.R. Brisson, and L.J. Johnston. J. Org. Chem.
62, 4047 (1997); (b) R. Torriani, M. Mella, E. Fasani, and A.
Albini. Tetrahedron, 53, 2573 (1997); (c) H.X. Weng, C.
Scarlata, and H.D. Roth. J. Am. Chem. Soc. 118, 10 947
(1996); (d) M. Schmittel and A. Burghart. Angew. Chem. Int.
Ed. Engl. 36, 2551 (1997).
4. M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G.
Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A.
Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-
Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J.
Cioslowski, B.B. Stefanov, A. Nanayakkara, N. Challacombe,
C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S.
Repogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley,
D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gon-
zalez, and J.A. Pople. Gaussian 94, Revision B.2. Gaussian,
Inc., Pittsburgh, Pa. 1995.
5. (a) C. Møller and M.S. Plesset. Phys. Rev. 46, 618 (1934);
(b) W.J. Hehre, L. Radom, P.v.R. Schelyer, and J.A. Pople. Ab
initio molecular orbital theory. Wiley–Interscience, New York.
1987; (c) R.S. Mulliken. J. Chem. Phys. 23, 1983 (1955).
6. (a) N.L. Allinger, Y.H. Yuh, and J.-H. Lii. J. Am. Chem. Soc.
111, 8551 (1989); (b) J.-H. Lii and N.L. Allinger. J. Am.
Preparation of 4-[4-methoxy-3,3-dimethylcyclohex-(E)-1-
ylidenyl]methylbenzoic acid (18a)
4-[4-Methoxy-3,3-dimethylcyclohex-(E)-1-ylidenyl]meth-
ylbenzonitrile (18) (0.041 g, 0.15 mmol) and 4 mL of a 40%
sodium hydroxide solution was refluxed for 2 days. This
mixture was cooled and extracted with dichloromethane.
The aqueous layer was acidified with hydrochloric acid
(conc.) and extracted twice with benzene. Evaporation of the
solvent left a white solid (0.026 g, 0.090 mmol), which was
recrystallized from hexanes.
4-[4-Methoxy-3,3-dimethylcyclohex-(E)-1-ylidenyl]-
methylbenzoic acid (18a)
The yield of 18a was 60%: the melting point was 112–
113°C; infrared (Nicolet 205) ν: 2967 (s), 2938 (s), 2900
(m), 2871 (m), 2821 (m), 2674 (w), 2544 (w), 1682 (s),
1608 (m), 1572 (w), 1425 (s), 1318 (m), 1290 (s), 1182 (m),
1
1101 (s), 951 (w); H nmr (250.13 MHz, CDCl3), δTM3S: 0.86
(s, 3H, CH3), 0.95 (s, 3H, CH3), 1.39–1.56 (m, 1H, J4ax–5ax
3
= 8.6 Hz, J5ax–6eq = 5.5 Hz, axial H of methylene group
2
2
(5ax-H)), 1.80–2.06 (m, 4H, J6ax–6eq = 13.7 Hz, J2ax–2eq
=
13.6 Hz, 3J5eq–6eq = 5.5 Hz, J4ax–5eq = 3.7 Hz, H of methy-
3
lene groups on ring (2ax-, 2eq-, 5eq-, 6ax-H)), 2.49 (m, 1H,
3
3
2J6ax–6eq = 13.7 Hz, J5ax–6eq = 5.5 Hz, J5eq–6eq = 5.5 Hz,
equatorial H of methylene group on ring (6eq-H)), 2.94 (dd,
3
3
1H, J4ax–5ax = 8.6 Hz, J4ax–5eq = 3.7 Hz, CH group,
methoxy-substituted (4ax-H)), 3.38 (s, 3H, OCH3), 3.44 (d,
3
2H, J7–38 = 7.3 Hz, CH2 group, aryl-substituted (8-H)), 5.24
3
(t, 1H, J7–8 = 7.3 Hz, vinyl H (7-H)), 7.27 (d, 2H, J2′–3′
=
8.1 Hz, 3J5′–6′ = 8.1 Hz, H’s adjacent to alkyl-substituted aryl
3
3
carbon (2′-H, 6′-H)), 8.02 (d, 2H, J2′–3′ = 8.1 Hz, J5′–6′
=
8.1 Hz, H’s adjacent to cyano-substituted aryl carbon (3′-H,
5′-H)); 13C nmr (62.90 MHz, CDCl3), δ: 21.52 (q), 25.06 (t),
25.83 (t), 27.58 (q), 33.90 (t), 37.19 (s), 48.04 (t, CH2, aryl-
substituted), 57.53 (q, OCH3), 86.14 (d, CH, methoxy-
substituted), 120.79 (d, vinyl CH), 126.90 (s, quaternary aryl
carbon, COOH-substituted), 128.46 (d, aromatic CH adja-
cent to alkyl-substituted aryl carbon), 130.41 (d, aromatic
CH adjacent to COOH-substituted carbon), 138.13 (s),
148.43 (s), 172.13 (s, CϭO of COOH); MS, m/z: 55(26),
© 1998 NRC Canada