Communication
Organic & Biomolecular Chemistry
2 For examples of pharmacologically active benzoxazepine
derivatives, see: (a) Y. Nagai, A. Irie, H. Nakamura, K. Hino,
H. Uno and H. Nishimura, J. Med. Chem., 1982, 25, 1065–
1070; (b) J. M. Klunder, K. D. Hargrave, M. West, E. Cullen,
K. Pal, M. L. Behnke, S. R. Kapadia, D. W. McNeil, J. C. Wu,
G. C. Chow and J. Adams, J. Med. Chem., 1992, 35, 1887–
1897; (c) Y. Liao, B. J. Venhuis, N. Rodenhuis,
W. Timmerman and H. Wikström, J. Med. Chem., 1999, 42,
2235–2244; (d) T. Miki, M. Kori, H. Mabuchi, R. Tozawa,
T. Nishimoto, Y. Sugiyama, K. Teshima and H. Yukimasa,
J. Med. Chem., 2002, 45, 4571–4580; (e) R. A. Smits,
H. D. Lim, B. Stegink, R. A. Bakker, I. J. P. de Esch and
R. Leurs, J. Med. Chem., 2006, 49, 4512–4516.
3 For examples see: (a) S.-M. Lu and H. Alper, J. Am. Chem.
Soc., 2005, 127, 14776–14784; (b) R. A. Bunce and
J. E. Schammerhorn, J. Heterocycl. Chem., 2006, 43, 1031–
1035; (c) Q. Yang, H. Cao, A. Robertson and H. Alper, J. Org.
Chem., 2010, 75, 6297–6299; (d) Y. Liu, C. Chu, A. Huang,
C. Zhan, Y. Ma and C. Ma, ACS Comb. Sci., 2011, 13, 547–
553; (e) M. O. Kitching, T. E. Hurst and V. Snieckus, Angew.
Chem., Int. Ed., 2012, 51, 2925–2929; (f) N. C. Ganguly,
P. Mondal, S. Roy and P. Mitra, RSC Adv., 2014, 4, 55640–
55648; (g) C. Shen, H. Neumann and X.-F. Wu, Green
Chem., 2015, 17, 2994–2999; (h) S. Liu, Y. Hu, P. Qian,
Y. Hu, G. Ao, S. Chen, S. Zhang and Y. Zhang, Tetrahedron
Lett., 2015, 56, 2211–2213; (i) T. E. Hurst, M. O. Kitching,
L. C. R. M. da Frota, K. G. Guimarães, M. E. Dalziel and
V. Snieckus, Synlett, 2015, 26, 1455–1460; ( j) C. Shen and
X.-F. Wu, Catal. Sci. Technol., 2015, 5, 4433–4443;
(k) X. Guo, D. Zhang-Negrerie and Y. Du, RSC Adv., 2015, 5,
94732–94736; (l) E. Zhang, X. Zhang, W. Wei, D. Wang,
Y. Cai, T. Xu, M. Yan and Y. Zou, RSC Adv., 2015, 5, 5288–
5294; (m) Y. Zhou, J. Zhu, B. Li, Y. Zhang, J. Feng, A. Hall,
J. Shi and W. Zhu, Org. Lett., 2016, 18, 380–383; (n) J. Shi,
J. Wu, C. Cui and W.-M. Dai, J. Org. Chem., 2016, 81,
10392–10403 and also see ref. 2a and b.
Scheme 6 Transformation of benzo[b][1,4]oxazepine 3aa.
alkynylketimine intermediate. Based on these results, we pro-
posed the possible reaction mechanism as shown in
Scheme 5c. Initially, the reaction of aminophenol 1b with alky-
none 2a would occur to produce an alkynylketimine intermedi-
ate. We surmised that this process would be accelerated by the
hydrogen bonding interaction between the carbonyl group of
alkynone 2a and the phenolic proton of aminophenol 1b.12 The
alkynylketimine intermediate would undergo intramolecular
7-endo-dig cyclization to give the desired benzoxazepine 3ba.13
Next, we attempted to examine the transformation of benzo
[b][1,4]oxazepine 3aa (Scheme 6). Benzo[b][1,4]oxazepine 3aa
was converted into 4,5-dihydrobenzo[b][1,4]oxazepine deriva-
tive 7 in 78% yield by reduction with NaBH4 in MeOH.
Conclusions
In conclusion, we have achieved the efficient synthesis of
benzo[b][1,4]oxazepines that belong to one of the rare classes
of benzoxazepine derivatives by the reaction of 2-aminophe-
nols with alkynones. A series of benzo[b][1,4]oxazepines were
obtained in good yields using the novel synthetic method.
Mechanistic experiments indicated that the phenolic proton
on the aminophenols might be involved in the formation of
the alkynylketimine intermediate that would undergo intra-
molecular 7-endo-dig cyclization to produce benzo[b][1,4]oxaze-
pines. The extension of the substrate scope and the detailed
mechanistic study are currently underway in our laboratory.
4 (a) A. V. Konstantinova, T. N. Gerasimova, M. M. Kozlova
and N. I. Petrenko, Chem. Heterocycl. Compd., 1989, 25,
451–454; (b) D. Tsvelikhovsky and S. L. Buchwald, J. Am.
Chem. Soc., 2011, 133, 14228–14231; (c) J.-B. Feng and
X.-F. Wu, Green Chem., 2015, 17, 4522–4526; (d) F. Hu,
H. Liu, J. Jia and C. Ma, Org. Biomol. Chem., 2016, 14,
11076–11079; (e) V. Jamsheena, C. K. Mahesha, M. N. Joy
and R. S. Lankalapalli, Org. Lett., 2017, 19, 6614–6617;
(f) X.-Y. Chen, Z.-H. Li, J.-Q. Liu and X.-S. Wang, Synthesis,
2019, 51, 1662–1668; (g) W. Hu, F. Teng, H. Hu, S. Luo and
Q. Zhu, J. Org. Chem., 2019, 84, 6524–6535, and also see ref.
2c and e.
5 (a) A. D. Cale, Jr., T. W. Gero, K. R. Walker, Y. S. Lo,
W. J. Welstead, Jr., L. W. Jaques, A. F. Johnson,
C. A. Leonard, J. C. Nolan and D. N. Johnson, J. Med.
Chem., 1989, 32, 2178–2199; (b) K. Kamei, N. Maeda,
R. Ogino, M. Koyama, M. Nakajima, T. Tatsuoka, T. Ohno
and T. Inoue, Bioorg. Med. Chem. Lett., 2001, 11, 595–598;
(c) K. Kamei, N. Maeda, K. Nomura, M. Shibata,
R. Katsuragi-Ogino, M. Koyama, M. Nakajima, T. Inoue,
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific
Research (C) from the Japan Society for the Promotion of
Science (17K05794). We thank Mr Yoshiyuki Takahashi for his
experimental support.
References
1 For a review, see: J. N. Sangshetti, A. Altamash Shakeel
Ahmad, F. A. Kalam Khan and Z. Zaheer, Mini-Rev. Org.
Chem., 2015, 12, 345–354.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2019