Organic Process Research & Development
Article
Wrobleski, S. T.; Dambalas, K.; Tummala, S.; Leung, S. S. W.; Lo, E.
T. Org. Process Res. Dev. 2012, 10, 1618−1625.
Vol. 3, p 77; New York: John Wiley & Sons Inc., 1952. (b) Bird, C.
W.; Cheeseman, G. W. H. Structure of Five-membered Rings with
One Heteroatom. In Comprehensive Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol. 4, pp
246−254.
(21) Hamann, H. J.; Liebscher, J. J. Org. Chem. 2000, 65, 1873−1876.
(22) Convergent reactions typically produce impurities that differ
significantly from the desired product and should be amenable to more
efficient purification. Zhang, T. Y. Chem. Rev. 2006, 106, 2583−2595.
(23) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815−
3818.
(5) LaPorte, T. L.; Spangler, L.; Hamedi, M.; Lobben, P.; Chan,S. H.;
Muslehiddinoglu, J.; and Wang, S. Y. Org. Process Res. Dev., to be
submitted.
(6) A paper to be submitted to Org. Process Res. Dev. describes the
process development from 5 to the active pharmaceutical ingredient
(API) or brivanib alaninate.
(7) Crispino, G. A.; Hamedi, M.; LaPorte, T. L.; Thornton, J. E.;
̆
Pesti, J. A.; Xu, Z.; Lobben, P. C.; Leahy, D. K.; Muslehiddinoglu, J.;
̈
Lai, C.; Spangler, L. A.: Discordia, R. P.; Gibson, F. S. Process for the
Preparation of [(1R),2S]-2-Aminopropionic acid 2-[4-(4-fluoro-2-
methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f ][1,2,4]triazin-6-
yloxy]-1-methylethyl ester. U.S. Patent 7,671,199, Mar 2, 2010.
(8) (a) Reissert, A. Ber. 1897, 30, 1030. (b) Baeyer, J. Ber. 1880, 13,
187. (c) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New
York, 1970; pp 176−183.
(24) Pesti, J., Ed. Org. Process Res. Dev. 2012, 16, 840 and manuscripts
following in the same issue: pp 844−1150.
(25) (a) Tetrahedron Lett. 1987 28, 1027−1030. (b) Tetrahedron
Lett. 1993 34, 7667−7668.
(26) A large variety of other chlorinating agents will also form 18, at
least in low yield, such as thionyl chloride, oxalyl chloride,
phosphorous trichloride, and phosphorus pentachloride. Similarly,
phosphorous oxybromide permitted impure preparations of the
analogous bromide. Methanesulfonyl chloride and DIPEA in dichloro-
methane formed the N-mesylate, unreactive when further treated with
4 and DABCO.
(27) (a) Ford, J. G.; Pointon, S. M.; Powell, L.; Siedlecki, P. S. Org.
Process Res. Dev. 2010, 14, 1078−1087. (b) Ford, J. G.; O’Kearney-
McMullan; Pointon, S. M.; Powell, L.; Siedlecki, P. S.; Purdie, M.;
Withnall, J.; Wood, P. O. F. Org. Process Res. Dev. 2010, 14, 1088−
1093. (c) Broxer, S.; Fitzgerald, M. A.; Sfouggatakis, C.; Defreese, J. L.;
Barlow, E.; Power, G. L.; Peddicord, M.; Su, B-N; Tai-Yuen, Y.;
Pathirana, C.; Sherbine, J. P. Org. Process Res. Dev. 2011, 15, 343−352.
(d) Sun, Z.; Wang, H.; Wen, K.; Li, Y.; Fan, E. J. Org. Chem. 2011, 76,
4149−4153. (e) See refs 1m and 33 (f) Thiel, O. R.; Achmatowicz,
M.; Bernard, C.; Wheeler, P.; Savarin, C.; Correll, T. L.; Kasparian, A.;
Allgeier, A.; Bartberger, M. D.; Tan, H.; Larsen, R. D. Org. Process Res.
Dev. 2009, 13, 230−241.
(28) Crispino, G.; Barbosa, S.; Fan, J.; Cai, Z. W. U.S. Patent Appl.
2005/0288289 A1, December 29, 2005. Solvents that permitted
chlorination with POCl3 included toluene, acetonitrile, dimethyl
carbonate, MTBE, ethyl acetate, isopropyl acetate, n-butyl acetate as
well as neat POCl3 itself.
(29) Other productive bases were quinoline, quinoxaline, triethyl-
amine, and most secondary and tertiary amines that were tested.
(30) For an excellent investigation of the chlorination kinetics and
mechanism for 4-quinazolones and the appearance of a similar dimer
see: Arnott, E. A.; Chan, L. C.; Cox, B. G.; Meyrick, B.; Phillips, A.. J.
Org. Chem. 2011, 1653−1661.
(9) Alternative bases to t-BuOK and alternative solvents have been
demonstrated: (a) Parikh, V. D.; Fray, A. H.; Kleinman, E. F. Synthesis
1988, 1567−1569. (b) Arnott, E. A.; Crosby, J.; Evans, M. C.; Ford, J.
G.; Jones, M. F.; Leslie, K. W.; McFarlane, I. M.; Sependa, G. J. Patent
WO/2008/053221 A2; May 8, 2008. The benzyl position acidity of 7
competes with deprotonation of the ethyl acetoacetate by t-BuOK.
Two equivalents of ethyl acetoacetate anion were necessary since one
would be quenched by the product. The side product formed by
nucleophilic displacement of the fluoride by tert-butoxide on the
starting material was minimized by maintaining ≤25 °C during the
addition of ethyl acetoacetate.
(10) All purities are HPLC area % unless otherwise specified.
(11) DSC/calorimetry detected the following exothermic events: 6
kJ/kg at 54 °C; 85 kJ/kg at 124 °C, and 74 kJ/kg at 221 °C. The
various stages of the workup revealed no concerns below 171 °C. Note
that these measurements were specific to our starting materials,
facilities and protocols. Repeating any of this chemistry requires
independent safety examination for prudent chemical practices.
(12) Following H2SO4 addition, exothermic events are detected at 8
kJ/kg at 66 °C, 256 kJ/kg at115 °C, 282 kJ/kg at 295 °C, and after 3 h
of reaction: 279 kJ/kg at 103 °C and 305 kJ/kg at 295 °C, indicating a
reaction temperature of 70 °C permitted a safe operation. The
concentrated oil was stable and displayed a DSC exotherm of 1193 kJ/
kg at 210 °C.
(13) Arnott, E. A.; Crosby, J.; Evans, M.C..; Ford, J. G.; Jones, M. F.;
Leslie, K. W.; Mcfarlane, I. M.; Sependa, G. J. PCT Int. Appl. (2008),
WO/2008/053221 A2 20080508. CAN 148:517536.
(14) Safety examination of the reaction solution established
exotherms of 12 kJ/kg at 108 °C and 250 kJ/kg at 180 °C and no
other points of concern for the rest of the reaction, workup,
recrystallization and drying.
(15) (a) Boovanahalli, S. K.; Kim, D. W.; Chi, D. Y. J. Org. Chem.
2004, 69, 3340−3344. (b) Kemperman, G. J.; Roeters, T. A.;
Hilberink, P. W. Eur. J. Org. Chem. 2003, 9, 1681−1686. (c) Parvulescu,
V. I.; Hardacre, C. Chem. Rev. 2007, 107, 2615−2665.
(16) DSC and safety testing identified exotherms of 208 kJ/kg at 90
°C and 77 kJ/kg at 275 °C, indicating little danger if CH2Cl2 was the
solvent and no other points of concern for the rest of the reaction,
workup, recrystallization and drying. While AlCl3 alone will cleave
aromatic methyl ethers, it requires forcing conditions: Gutman, A.;
Nisnevich, G.; Yudovitch, L. U.S. Patent 7,312,345 B2, December 25,
2007.
(31) Archmatowicz, M. M.; Thiel, O. R.; Colyer, J. T.; Hu, J.; Elipa,
M. V. S.; Tomaskevitch, J.; Tedrwo, J. S.; Larsen, R. D. Org. Process Res.
Dev. 2010, 14, 1490−1500.
(32) The ring nitrogens of the pyrrolotriazine are not sufficiently
basic to complex HCl.
1
(33) The structure of this impurity was established by HNMR and
single crystal X-ray spectroscopy. It became the primary product by
treating triazine 3 with 0.3 equiv of POCl3 and 1.2 equiv of DIPEA.
Similar dimers have been detected by others when reaction conditions
are not optimal: Anderson, N. G.; Ary, T. D.; Berg, J. L.; Bernot, P. J.;
Chan, Y. Y.; Chen, C.-K; Davies, M. L.; DiMarco, J. D.; Dennis, R. D.;
Deshpande, R. P.; Do, H. D.; Droghini, R.; Early, W. A.; Gougoutas, J.
Z.; Grosso, J. A.; Harris, J. C.; Haas, O. W.; Jass, P. A.; Kim, D. H.;
Kodersha, G. A.; Kotnis, A. S.; LaJeunesse, J.; Lust, D. A.; Madding, G.
D.; Modi, S. P.; Moniot, J. L.; Nguyen, A.; Palaniswamy, V.; Phillipson,
D. W.; Simpson, J. H.; Thoraval, D.; Thurston, D. A.; Tse, K.;
Polomski, R. E.; Wedding, D. L.; Winter, W. J. Org. Process Res. Dev.
1997, 1, 300−310 See also ref 2f..
(17) (a) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106,
2875−2911. (b) Hegedus, L. S. Angew. Chem. 1988, 100, 1147−61.
(c) Pindur, U.; Adam, R. J. Heterocycl. Chem. 1988, 25, 1−8.
(18) Safety testing indicated exothermic events of 81 kJ/kg at 164 °C
and 16 kJ/kg at 264 °C and no significant events for all other stages of
the workup, recrystallization and drying.
(34) Archmatowicz et al. has published an excellent analysis and
understanding of the quench of POCl3 in a similar reaction but states
that each reaction is unique and recommends full hazard analysis
before scale-up; see ref 31.
(19) MS would detect components up to MW = 1035.
(20) 2-Methylindoles are known to undergo ring oxidations for many
oxidants: (a) Julian, P. L.; Mueyer, E. W.; Printy, H. C. In The
Chemistry of Indoles; Elderfield, R. C., Ed.; Heterocyclic Compounds,
M
dx.doi.org/10.1021/op400242j | Org. Process Res. Dev. XXXX, XXX, XXX−XXX