W.-M. Dai, A. Wu / Tetrahedron Letters 42 (2001) 81–83
83
HO
HO
CHO
Br
Pd(PPh3)4, CuI
5
Br
nBuLi, THF
-78 °C, 1 h (80%)
Et2NH-CH3CN (1:5)
80-90 °C, 1.5 h (28%)
1-Naph
1-Naph
1-Naph
10
12
11
Scheme 4.
clized, in the presence of 10 mol% Pd(PPh3)4 and 20
mol% CuI in neat Et2NH at 55–60°C for 2 h, to give 9
in 11% yield. The lower yield might be due to the
methoxy group in 8, which serves as a better leaving
group than the hydroxyl group in 6. Thus, decomposi-
tion through side-reactions of the allylic or propargylic
methyl ether with Pd(0)10 or Pd(II)11 species generated
in the reaction significantly reduced the yield of 9. This
was also true for the corresponding allylic acetate that
decomposed entirely on heating in neat Et2NH.
hedron Lett. 1975, 4467. (b) Sonogashira, K. In Compre-
hensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds.;
Pergamon Press: New York, 1991; Vol. 3, pp. 521–549.
2. Tsuji, J. Palladium Reagents and Catalysts; John Wiley &
Sons: Chichester, 1995; pp. 168–178.
3. Porco, J. A.; Schoenen, F. J.; Stout, T. J.; Clardy, J.;
Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 7410.
4. (a) Hirama, M.; Fujiwara, K.; Shigematsu, K.;
Fukazawa, Y. J. Am. Chem. Soc. 1989, 111, 4120. (b)
Hirama, M.; Gomibuchi, T.; Fujiwara, K.; Sugiura, Y.;
Uesugi, M. J. Am. Chem. Soc. 1991, 113, 9851. (c)
Tokuda, M.; Fujiwara, K.; Gomibuchi, T.; Hirama, M.;
Uesugi, M.; Sugiura, Y. Tetrahedron Lett. 1993, 34, 669.
5. (a) Stille, J. K. Pure Appl. Chem. 1985, 57, 1771. (b)
Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
(c) Mitchell, T. N. Synthesis 1992, 803.
To expand the intramolecular cross-coupling reaction,
we synthesized the 1-naphthyl analogue 12 (Scheme 4).9
Addition of the mono-lithium acetylide derived from
1,7-octadiyne 5 and n-BuLi with 10 provided alcohol 11
in 80% yield. The Pd(0)ꢀCu(I) catalyzed cyclization of
11 was carried out under the optimal conditions used
for 6 to give compound 12 in 28% isolated yield. The
diminished yield of 12 compared to 7 may arise from
the bulky 1-naphthyl group, which may cause unfavor-
able steric interaction during the oxidative addition of
the alkenyl bromide to the Pd(0) catalyst.
6. The Sonogasgira reaction has failed to form a 10-mem-
bered enediyne. Cre´visy, C.; Beau, J.-M. Tetrahedron
Lett. 1991, 32, 3171.
7. Representative examples of 10-membered enediyne syn-
thesis, see: (a) Shair, M. D.; Yoon, T.; Danishefsky, S. J.
J. Org. Chem. 1994, 59, 3755. (b) Takahashi, T.;
Sakamoto, Y.; Yanada, H.; Usui, S.; Fukazawa, Y.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1345. (c) Clive, D.
L. J.; Bo, Y.; Tao, Y.; Daigneault, S.; Wu, Y.-J.;
Meignan, G. J. Am. Chem. Soc. 1996, 118, 4904. (d)
Nantz, M. H.; Moss, D. K.; Spence, J. D.; Olmstead, M.
M. Angew. Chem., Int. Ed. 1998, 37, 470. For 9-mem-
bered enediyne synthesis, see: (e) Tanaka, H.; Yamada,
H.; Matsuda, A.; Takahashi, T. Synlett 1997, 381.
8. (a) Dai, W.-M.; Fong, K. C.; Lau, C. W.; Zhuo, L.;
Hamaguchi, W.; Nishimoto, S. J. Org. Chem. 1999, 64,
682. Also see: (b) Dai, W.-M.; Fong, K. C.; Danjo, H.;
Nishimoto, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 779.
(c) Dai, W.-M.; Fong, K. C. Tetrahedron Lett. 1996, 37,
8413. (d) Dai, W.-M.; Lee M. Y. H. Tetrahedron Lett.
1998, 39, 8149. (e) Dai, W.-M.; Wu, J.; Fong, K. C.; Lee,
M. Y. H.; Lau, C. W. J. Org. Chem. 1999, 64, 5062. (f)
Dai, W.-M.; Lee, M. Y. H. Tetrahedron Lett. 1999, 40,
2397.
In summary, we have established an intramolecular
cross-coupling reaction of alkenyl bromides with 1-
alkynes for an expeditious synthesis of the highly
strained cyclodeca-1,5-diyne skeleton. Key factors to
our success are use of a secondary amine base, a high
reaction temperature (80–90°C) and short reaction
times. With this intramolecular cross-coupling ap-
proach, we synthesized compound 7 in two steps and in
42% overall yield from commercial materials. More-
over, alcohols 7 and 12 are useful precursors for the
synthesis of 10-membered enediynes capable of cleaving
DNA and inhibiting cancer cell growth.8a Application
of this cyclization to the synthesis of related com-
pounds is underway in our laboratory.
Acknowledgements
9. All new compounds were fully characterized by IR, 1H
NMR, 13C NMR, MS and HRMS.
10. Tsuji, J. Palladium Reagents and Catalysts; John Wiley &
Sons: Chichester, 1995; pp. 290–422.
We thank Department of Chemistry, HKUST for
financial support. A post-doctoral fellowship to A. Wu
is also acknowledged.
11. (a) Kataoka, H.; Watanabe, K.; Goto, K.; Tetrahedron
Lett. 1990, 31, 4181. (b) Kataoka, H.; Wataneba, K.;
Miyazaki, K.; Tahara, S.; Ogu, K.; Matsuoka, R.; Goto,
K. Chem. Lett. 1990, 1705. (c) Mahrwald, R.; Schick, H.
Angew. Chem., Int. Ed. Engl. 1991, 30, 593.
References
1. (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetra-
.
.