2980 Organometallics, Vol. 20, No. 14, 2001
Braunstein et al.
ylene): 490 vs, 485 s, 403 m, 379 s, 340 vs, 325 s, 316 m, 289
vs. 1H NMR (300.13 MHz, CDCl3): δ 1.50 (br s, 6 H, NC(CH3)-
(CH3)), 1.60 (br s, 6 H, NC(CH3)(CH3)), 1.80 (s, 6 H, OC(CH3)-
(CH3)) 1.85 (s, 6 H, OC(CH3)(CH3)), AB spin system δA 4.15
(d, 2 H, 2J HH ) 7.5 Hz, OCHH), δB 4.20 (d, 2 H, OCHH), 7.40-
7.60 (m, 3 H, aryl), 8.00-8.10 (m, 2 H, aryl). 13C{1H} NMR
(50.3 MHz, CDCl3): δ 27.4-27.8 (m, OC(CH3)2 and NC(CH3)2),
70.0-71.0 (br, NC(CH3)2), 80.0-84.0 (br, OC(CH3)2 and OCH2),
128.0-134.0 (m, aryl), 168.0-170.0 (br, CdN). 31P{1H} NMR
oxazoline), 1.30 (s, 3 H, NC(CH3)(CH3) from coordinated
oxazoline), 1.45 (s, 3 H, OC(CH3)(CH3) from uncoordinated
oxazoline), 1.58 (s, 3 H, OC(CH3)(CH3) from uncoordinated
oxazoline), 1.62 (s, 3 H, OC(CH3)(CH3) from coordinated
oxazoline), 1.80 (s, 3 H, OC(CH3)(CH3) from coordinated
oxazoline), 3.40 (br s, 2 H, allylic CH2 cis to P), AB spin system
δA 3.70 (br, 2 H, OCHH from uncoordinated oxazoline), 3.75
(dd, J HH ) 9.5, J PH ) 9.7 Hz, allylic CH2 trans to P), δB 3.90
(br, 2 H, OCHH from uncoordinated oxazoline), AB spin system
δA 4.25 (br, 2 H, OCHH from coordinated oxazoline), δB 4.35
3
3
(121.5 MHz, CDCl3): δ 106.5 ppm (s). Anal. Calcd for C22H33
-
3
Cl2N2O4PPd‚0.25CH2Cl2: C, 43.13; H, 5.60; N, 4.68. Found:
(d, 2 H, OCHH from coordinated oxazoline), 4.80 (dd, J HH
)
C, 43.19; H, 5.52; N, 4.54.
[P d (η3-C3H5)(NOP ONMe -N,P )](P F 6) (6). The NOPON
4.0, 3J PH ) 4.0 Hz, allylic CH2 trans to P), 5.75 (m, 1 H, allylic
CH), 7.50-7.75 (m, 5 H, aryl). 1H NMR (500.13 MHz, toluene-
d8, 298 K): δ 1.40 (s, 12 H, NC(CH3)2), 1.50 (s, 6 H, OC(CH3)2),
Me
2
2
ligand (0.155 g, 0.37 mmol) and [Pd(η3-C3H5)(µ-Cl)]2 (0.067 g,
0.18 mmol) were dissolved in CH2Cl2 (20 mL). The pale yellow
solution was stirred for 20 min, and solid NH4PF6 (0.66 g, 0.41
mmol) was added. The reaction mixture was stirred for 3 h,
and the fine white precipitate formed was filtered off by means
of a cannula fitted with a glass fiber filter paper. The filtrate
was taken to dryness to give a pale yellow oil. Trituration with
pentane afforded an off-white solid, which was further washed
with 2 × 10 mL of pentane. The solid was dried under vacuum
overnight; yield 0.185 g (71%). Selected IR data: (CH2Cl2), νCN
1662 s cm-1 (uncoordinated oxazoline), νCN 1630 s cm-1
(coordinated oxazoline); (polyethylene): 490 s, 476 vs, 419 s,
2
3
1.60 (s, 6 H, OC(CH3)2), 3.05 (2 H, J HH ) 6.0, J PH ) 6.5 Hz,
Pd-CH2), AB spin system δA 3.45 (2 H, 2J HH ) 8.1 Hz, OCHH),
2
3
δB 3.60 (2 H, J HH ) 8.1 Hz, OCHH), 4.65 (1 H, J HH ) 17.0
Hz, CdCHH), 4.85 (1 H, J HH ) 9.8 Hz, CdCHH), 6.80-7.20
3
(overlapping m for toluene-d8, CHdCH2 and aryl), 7.90-8.00
(2 H, m, aryl). For the 13C{1H} NMR spectra in CD2Cl2 and
toluene-d8 see Tables 2 and 4. 13C{1H} NMR (125.7 MHz, CD2-
Cl2, 298 K): δ 26.6 (s, NC(CH3)(CH3)), 26.9 (s, NC(CH3)(CH3)),
3
27.1 (d, J PC ) 2.3 Hz, OC(CH3)(CH3)), 27.15 (s, OC(CH3)-
(CH3)), 37.5 (br, allylic CH2 cis to P), 67.9 (s, NC(CH3)2), 78.7
3
(d, J PC ) 7.4 Hz, OC(CH3)2), 79.5 (s, OCH2), 96.0 (br, allylic
3
1
CH2 trans to P), 127.7 (d, J PC ) 11.5 Hz, m-aryl), 130.2 (d,
344 m, 313 w, 294 m. H NMR (500.13 MHz, CD2Cl2, 293 K):
3
2J PC ) 17.2 Hz, o-aryl), 131.1 (s, p-aryl), 132.2 (d, J PC ) 6.7
δ 1.20 (s, 6 H, NC(CH3)(CH3)), 1.25 (s, 6 H, NC(CH3)(CH3)),
1.65 (s, 6 H, OC(CH3)(CH3)), 1.75 (s, 6 H, OC(CH3)(CH3)), 3.45
(br s, 2 H, allylic CH2 cis to P), 3.75 (dd, 1 H, 3J HH ) 13.8, 3J PH
) 14.0 Hz, allylic CH2 trans to P), AB spin system δA 4.10 (d,
2 H, 2J HH ) 8.5 Hz, OCHH), δB 4.15 (d, 2 H, OCHH), 4.95 (dd,
Hz, allylic CH), 136.0 (d, J PC ) 63.2 Hz, ipso-aryl), 167.0 (d,
4J PC ) 3.0 Hz, CdN). For the low-temperature spectrum, see
Tables 2 and 4. 31P{1H} NMR (121.5 MHz, CDCl3): δ 138.1
(s). Anal. Calcd for C25H38ClN2O4PPd: C, 49.75; H, 6.35; N,
4.65. Found: C, 50.15; H, 6.50; N, 4.60.
3
3
1 H, J HH ) 7.5, J PH ) 8.0 Hz, allylic CH2 trans to P), 5.75
3
3
3
(m, 1 H, J HH ) 13.8, J HH ) 7.5, J HH ) 0.9 Hz, allylic CH),
7.50-7.60 (m, 3H, aryl), 7.65-7.70 (m, 2H, aryl). 13C{1H} NMR
(125.7 MHz, CD2Cl2, 298 K): δ 27.8 (s, NC(CH3)(CH3)), 28.0
(s, NC(CH3)(CH3)), 28.1 (d, 3J PC ) 4.3 Hz, OC(CH3)(CH3)), 28.5
(d, 3J PC ) 6.4 Hz, OC(CH3)(CH3)), 54.7 (d, 3J PC ) 6.4 Hz, allylic
CH2 cis to P), 68.9 (s, NC(CH3)2), 78.8 (d, 3J PC ) 40.1 Hz, allylic
Com p u ta tion a l Deta ils. The calculations were carried out
at the DFT-B3LYP level with the Gaussian 98 program
package.64 The B3LYP exchange-correlation functional is
made of the Becke’s three-parameter hybrid exchange func-
tional65 and the Lee, Yang, and Parr correlation functional.66
The geometries were fully optimized at that level by the
gradient technique, using the standard LANL2DZ basis set
to which d polarization functions were added to the carbon,
nitrogen, oxygen, phosphorus, and chlorine atoms. In this basis
the innermost core electrons of the palladium atom (up to 3d)
are described by the relativistic pseudo potential of Hay and
Wadt67 and the remaining outer core and valence electrons
by a (341/541/31) basis set where the two outermost 5p
functions of the standard LANL2DZ basis set have been
replaced by a (41) split of the optimized 5p function from Couty
and Hall.68 The exponents of the d polarization functions are
0.75, 0.80, 0.85, 0.34, and 0.514 for carbon, nitrogen oxygen,
phosphorus,69 and chlorine,69 respectively. The Cartesian
coordinates of the optimized geometries of the systems 9a -
13b are given in the Supporting Information together with
the corresponding total energies.
3
CH2 trans to P), 80.3 (s, OCH2), 81.15 (d, J PC ) 8.8 Hz,
3
3
OC(CH3)2), 121.5 (d, J PC ) 8.8 Hz, allylic CH), 129.4 (d, J PC
2
) 12.5 Hz, m-aryl), 130.5 (d, J PC ) 18.1 Hz, o-aryl), 133.1 (s,
1
p-aryl), 136.4 (d, J PC ) 57.3 Hz, ipso-aryl), 168.5 (s, CdN).
31P{1H} NMR (121.5 MHz, CDCl3): 136.5 (s), -144.0 (sept, J PF
) 710 Hz, PF6-). Anal. Calcd for C25H38F6N2O4P2Pd: C, 42.42;
H, 4.70; N, 3.96. Found: C, 42.35; H, 4.92; N, 3.95.
[P d (η3-C3H5)Cl(NOP ONMe -N,P )] (7). The NOPON ligand
2
(0.164 g, 0.39 mmol) and [Pd(η3-C3H5)(µ-Cl)]2 (0.071 g, 0.19
mmol) were dissolved in CH2Cl2 (20 mL). The pale yellow
solution was stirred for 20 min, and the solvent was removed
under vacuum. To the pale yellow oil thus obtained were added
2 mL of CH2Cl2 and 20 mL of pentane to allow precipitation
of a yellow impurity. The suspension was filtered through a
cannula fitted with glass fiber filter paper. The filtrate was
taken to dryness, and the off-white powder thus obtained
washed with 2 × 5 mL of pentane. The solid was dried
overnight under vacuum; yield 0.079 g (93%). Single crystals
of 7b were obtained by slow evaporation of a 1:4 CH2Cl2/
pentane solution. Selected IR data: (CH2Cl2), νCN 1659 s cm-1
(uncoordinated oxazoline), νCN 1637 s cm-1 (coordinated ox-
azoline); (polyethylene): 495 m, 476 vs, 439 m, 407 s, 371 vs,
X-r a y Str u ctu r a l An a lyses. The diffraction intensities
were collected using Mo KR graphite-monochromated radiation
(64) Frisch, M. J .; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J . R.; Zakrzewski, V. G.; Montgomery, J . A.,
J r.; Stratmann, R. E.; Burant, J . C.; Dapprich, S.; Millam, J . M.;
Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J .;
Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo,
C.; Clifford, S.; Ochterski, J .; Petersson, G. A.; Ayala, P. Y.; Cui, Q.;
Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J . B.; Cioslowski, J .; Ortiz, J . V.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.;
Fox, D. J .; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Gonzales, C.; Challacombe, M.; Gill, P. M. W.; J ohnson, B.; Chen, W.;
Wong, M. W.; Andres, J . L.; Gonzales, C.; Head-Gordon, M.; Reploge,
E. S.; Pople, J . A. In Gaussian 98, Revision A.5; Pittsburgh PA, 1998.
(65) Becke, A. D. J . Chem. Phys. 1993, 98, 5648.
1
342 m, 287 s. H NMR (500.13 MHz, CD2Cl2, 298 K): δ 1.30
(s, 6 H, NC(CH3)(CH3)), 1.35 (s, 6 H, NC(CH3)(CH3)), 1.70 (s,
6 H, OC(CH3)(CH3)), 1.75 (s, 6 H, OC(CH3)(CH3)), 3.00 (very
2
br, 2 H, allylic CH2), AB spin system δA 4.00 (d, 2 H, J HH
)
8.5 Hz, OCHH), δB 4.05 (d, 2 H, OCHH), 4.30 (very br, 1 H,
allylic CH2), 4.70 (very br, 1 H, allylic CH2), 6.00 (d quint, 1
3
4
H, J HH ) 10.6, J PH ) 1.7 Hz, allylic CH), 7.40-7.60 (m, 3 H,
aryl), 7.75-7.85 (m, 2 H, aryl). 1H NMR (500.13 MHz, CD2-
Cl2, 177 K): δ 0.90 (s, 3 H, NC(CH3)(CH3) from uncoordinated
oxazoline), 1.05 (s, 3 H, NC(CH3)(CH3) from uncoordinated
oxazoline), 1.15 (s, 3 H, NC(CH3)(CH3) from coordinated
(66) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(67) Hay, P. J .; Wadt, W. R. J . Chem. Phys. 1985, 82, 299.
(68) Couty, M.; Hall, M. B. J . Comput. Chem. 1996, 17, 1359.
(69) Szabo, K. J . J . Am. Chem. Soc. 1996, 118, 7818.