pubs.acs.org/joc
Almost at the same time as the Weinreb amides were
Microwave-Assisted Synthesis of Weinreb and MAP
Aryl Amides via Pd-Catalyzed Heck
Aminocarbonylation Using Mo(CO)6 or W(CO)6
discovered, Meyers and Comins reported the use of N-methyl-
amino pyridyl amides (MAPA) as acylating agents.8,9
In contrast to the Weinreb amides, which form a stable
metal-chelated intermediate preventing a second nucleophilic
addition, the MAP amides can be more sensitive toward
further alkylation and the reaction outcome depends largely
on the organometallic reagent used. Nonetheless, the MAP
agents can be useful in the synthesis of aldehydes, ketones,
alcohols, amides and esters.9-11
Anna Wie-ckowska, Rebecca Fransson, Luke R. Odell,* and
Mats Larhed
Organic Pharmaceutical Chemistry, Department of Medicinal
Chemistry, Uppsala University, BMC, Box 574,
SE-751 23 Uppsala, Sweden
Traditionally, Weinreb amides have been prepared from
carboxylic acids5,12,13 and their derivatives, for example, acid
chlorides,1 esters,14 lactones, amides and anhydrides.5 More
recent methods have focused on transition metal-catalysis
and include the cross-coupling of N-methoxy-N-methylcar-
bamoyl chloride with vinyl and aryl stannanes15 or boronic
acids16 and the Heck aminocarbonylation17-21 of N,O-di-
methylhydroxylamine (1) with aryl bromides,22 aryl and
vinyl iodides,23 and lactam/lactone-derived triflates,24 under
a carbon monoxide (CO) atmosphere.
Received October 29, 2010
Our interest in the Heck carbonylation reaction lies in the
development of CO-gas free methods, which are suitable for
small scale laboratory applications and parallel synthesis.
The benefits of these protocols are well established and
include their low cost, preparative ease (reactions do not
need to be carried out under an inert atmosphere) and, more
importantly, the in situ generation of toxic CO-gas. We25-32
A simple and expedient process for the Heck aminocarbo-
nylative synthesis of Weinreb and MAP amide acylating
agents, from aryl halides, is reported. This methodology
utilizes solid sources of CO making it readily accessible to
chemists working in small-scale laboratory applications.
(6) Murphy, J. A.; Commeureuc, A. G. J.; Snaddon, T. N.; McGuire,
T. M.; Khan, T. A.; Hisler, K.; Dewis, M. L.; Carling, R. Org. Lett. 2005, 7,
1427.
(7) Hisler, K.; Tripoli, R.; Murphy, J. A. Tetrahedron Lett. 2006, 47, 6293.
(8) Comins, D.; Meyers, A. I. Synthesis 1978, 403.
Since their discovery in 1981 by Nahm and Weinreb,1 the
N-methoxy-N-methylamides (i.e., Weinreb amides, see Figure 1)
have, over the past 20 years, been extensively developed and
utilized as acylating agents.2-5 Their clean interaction with
both Grignard and organolithium reagents to generate
ketones and with metalhydrides to form aldehydes, without
overaddition, makes them extremely useful in the prepara-
tion of carbonyl containing compounds. Recently, ylids were
reported to generate ketones and aldehydes from Weinreb
amides, offering even milder reaction conditions in compar-
ison to the organometallic reagents.6,7
(9) Meyers, A. I.; Comins, D. L. Tetrahedron Lett. 1978, 5179.
(10) Meyers, A. I.; Babiak, K. A.; Campbell, A. J.; Comins, D. L.;
Fleming, M. P.; Henning, R.; Heuschmann, M.; Hudspeth, J. P.; Kane,
J. M.; Reider, P. J.; Roland, D. M.; Shimizu, K.; Tomioka, K.; Walkup,
R. D. J. Am. Chem. Soc. 1983, 105, 5015.
(11) Comins, D. L.; Dernell, W. Tetrahedron Lett. 1981, 22, 1085.
(12) Braun, M.; Waldmuller, D. Synthesis 1989, 856.
(13) Niu, T.; Zhang, W. M.; Huang, D. F.; Xu, C. M.; Wang, H. F.; Hu,
Y. L. Org. Lett. 2009, 11, 4474.
(14) Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.; Dolling,
U. H.; Grabowski, E. J. J. Tetrahedron Lett. 1995, 36, 5461.
(15) Murakami, M.; Hoshino, Y.; Ito, H.; Ito, Y. Chem. Lett. 1998, 163.
(16) Krishnamoorthy, R.; Lam, S. Q.; Manley, C. M.; Herr, R. J. J. Org.
Chem. 2010, 75, 1251.
(17) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39,
3318.
(18) Schoenberg, A.; Heck, R. F. J. Org. Chem. 1974, 39, 3327.
€
(19) Brennfuhrer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed.
2009, 48, 4114.
(20) Barnard, C. F. J. Organometallics 2008, 27, 5402.
(21) Grigg, R.; Mutton, S. P. Tetrahedron 2010, 66, 5515.
(22) Martinelli, J. R.; Freckmann, D. M. M.; Buchwald, S. L. Org. Lett.
2006, 8, 4843.
ꢀ
ꢀ
(23) Takacs, A.; Petz, A.; Kollar, L. Tetrahedron 2010, 66, 4479.
(24) Deagostino, A.; Larini, P.; Occhiato, E. G.; Pizzuto, L.; Prandi, C.;
Venturello, P. J. Org. Chem. 2008, 73, 1941.
FIGURE 1. General structures of Weinreb and MAP aryl amides
and their application as acylating agents.
(25) Wu, X.; Ekegren, J. K.; Larhed, M. Organometallics 2006, 25, 1434.
(26) Lagerlund, O.; Larhed, M. J. Comb. Chem. 2006, 8, 4.
(27) Wan, Y.; Alterman, M.; Larhed, M.; Hallberg, A. J. Org. Chem.
2002, 67, 6232.
(28) Wan, Y.; Alterman, M.; Larhed, M.; Hallberg, A. J. Comb. Chem
2003, 5, 82.
(29) Wannberg, J.; Larhed, M. J. Org. Chem. 2003, 68, 5750.
(30) Wu, X.; Larhed, M. Org. Lett. 2005, 7, 3327.
(31) Wu, X.; Wannberg, J.; Larhed, M. Tetrahedron 2006, 62, 4665.
*Fax: þ 46 18 4714474.
(1) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
(2) Balasubramaniam, S.; Aidhen, I. S. Synthesis 2008, 3707.
(3) Khlestkin, V. K.; Mazhukin, D. G. Curr. Org. Chem. 2003, 7, 967.
(4) Singh, J.; Satyamurthi, N.; Aidhen, I. S. J. Prak. Chem. 2000, 342, 340.
(5) Sibi, M. P. Org. Prep. Proced. Int. 1993, 25, 15.
€
(32) Odell, L. R.; Savmarker, J.; Larhed, M. Tetrahedron Lett. 2008, 49, 6115.
978 J. Org. Chem. 2011, 76, 978–981
Published on Web 01/13/2011
DOI: 10.1021/jo102151u
r
2011 American Chemical Society