3870 J ournal of Medicinal Chemistry, 2001, Vol. 44, No. 23
Mackman et al.
(14) Brandstetter, H.; Ku¨hne, A.; Bode, W.; Huber, R.; von der Saal,
W.; Wirthensohn, K.; Engh, R. A. X-Ray Structure of Active Site-
inhibited Clotting Factor XasImplications for Drug Design and
Substrate Recognition. J . Biol. Chem. 1996, 271, 29988-29992.
(15) Zhao, Z.; Arniaz, D. O.; Griedel, B.; Sakata, S.; Dallas, J . L.;
Whitlow, M.; Trinh, L.; Post, J .; Liang, A.; Morrissey, M. M.;
Shaw, K. J . Design, Synthesis, and In Vitro Biological Activity
of Benzimidazole Based Factor Xa Inhibitors. Bioorg. Med.
Chem. Lett. 2000, 10, 963-966.
(16) Ewing, W. R.; Becker, M. R.; Manetta, V. E.; Davis, R. S.; Pauls,
H. W.; Mason, H.; Choi-Sledeski, Y. M.; Green, D.; Cha, D.;
Spada, A. P.; Cheney, D. L.; Mason, J . S.; Maignan, S.; Guillo-
teau, J .-P.; Brown, K.; Colussi, D.; Bentley, R.; Bostwick, J .;
Kasiewski, C. J .; Morgan, S. R.; Leadley, R. J .; Dunwiddie, C.
T.; Perrone, M. H.; Chu, V. Design and Structure-Activity
Relationships of Potent and Selective Inhibitors of Blood Co-
agulation Factor Xa. J . Med. Chem. 1999, 42, 3557-3571.
(17) Choi-Sledeski, Y. M.; McGarry, D. G.; Green, D. M.; Mason, H.
J .; Becker, M. R.; Davis, R. S.; Ewing, W. R.; Dankulich, W. P.;
Manetta, V. E.; Morris, R. L.; Spada, A. P.; Cheney, D. L.; Brown,
K. D.; Colussi, D. J .; Chu, V.; Heran, C. L.; Morgan, S. R.;
Bentley, R. G.; Leadley, R. J .; Maignan, S.; Guilloteau, J .-P.;
Dunwiddie, C. T.; Pauls, H. W. Sulfonamidopyrrolidinone Factor
Xa Inhibitors: Potency and Selectivity Enhancements via P-1
and P-4 Optimization. J . Med. Chem. 1999, 42, 3572-3587.
(18) (a) Rai, R.; Sprengeler, P. A.; Elrod, K. C.; Young, W. B.
Perspectives on Factor Xa Inhibition. Curr. Med. Chem. 2000,
1, 1-25. (b) Fevig, J . M.; Wexler, R. R. Anticoagulants: Thrombin
and Factor Xa Inhibitors. Annu. Rep. Med. Chem. 1999, 34, 81-
100.
(19) Rijken, D. C.; Groeneveld, E. Substrate Specificity of tissue-type
and urokinase-type plasminogen activators. Biochem. Biophys.
Res. Commun. 1991, 174, 432-438.
(20) Zeslawska, E.; Schweinitz, A.; Karcher, A.; Sondermann, P.;
Sperl, S.; Stu¨rzebecher, J .; J acob, U. Crystals of the Urokinase
Type Plasminogen Activator Variant âc-uPA in Complex with
Small Molecule Inhibitors Opens the Way towards Structure-
based Drug Design. J . Mol. Biol. 2000, 301, 465-475.
(21) Nienaber, V.; Wang, J .; Davidson, D.; Henkin, J . Re-engineering
of Human Urokinase Provides a System for Structure-based
Drug Design at High Resolution and Reveals a Novel Structural
Subsite. J . Biol. Chem. 2000, 275, 7239-7248.
(22) Katz, B. A.; Elrod, K. C.; Luong, C.; Rice, M.; Mackman, R. L.;
Sprengeler, P. A.; Spencer, J .; Hataye, J .; J anc, J .; Link, J .;
Litvak, J .; Rai, R.; Rice, K.; Sideris, S.; Verner, E.; Young, W. A
and 50 µL of internal standard solution with the plasma
sample. The samples were centrifuged and the supernatant
transferred to another vial for drying by heated nitrogen gas.
The sample was reconstituted in 200 µL of mobile phase (25%
acetonitrile and 0.2% formic acid in water) and injected onto
the LC-MS/MS system. Chromatographic separation was
performed using a C18 column (Phaenomenex, 5 µm, 2 × 100
mm) with a flow rate of 0.4 mL/min and a linear gradient of
solvent B in solvent A (solvent A was 0.2% formic acid in water,
and solvent B was 0.2% formic acid in acetonitrile). Concentra-
tions were calculated using previously established standard
curves of the inhibitors, ranging from 1 to 10000 ng/mL, and
the internal standard in rat plasma. The limit of quantitation
was 6 ng/mL plasma.
Pharmacokinetic parameters were estimated using Win-
Nonlin Version 1.5 (Pharsight Corp., California). Pharmaco-
kinetic calculations were performed using a nominal dose and
collection time.
Ack n ow led gm en t. We thank Drs. M. Venuti, J .
Knolle, and R. McDowell for helpful discussions and
insights. We also thank Dr. J ames J anc, Dr. Kesavan
Radika, and J ing Wang for the Ki determinations.
Refer en ces
(1) Verner, E.; Katz, B. A.; Spencer, J . R.; Allen, D.; Hataye, J .;
Hruzewicz, W.; Hui, H. C.; Kolesnikov, A.; Li, Y.; Luong, C.;
Martelli, A.; Radika. K.; Rai, R.; She, M.; Shrader, W.; Spren-
geler, P. A.; Trapp, S.; Wang, J .; Young, W. B.; Mackman, R. L.
Development of Serine Protease Inhibitors Displaying a Multi-
centered Short (<2.3 Å) Hydrogen Bond Binding Mode: Inhibi-
tors of Urokinase-type Plasminogen Activator and Factor Xa.
J . Med. Chem. 2001, 44, 2753-2771.
(2) Magill, C.; Katz, B. A.; Mackman, R. L. Emerging therapeutic
targets in oncology: urokinase-type plasminogen activator sys-
tem. Emerging Ther. Targets 1999, 3, 109-133. Andreasen, P.
A.; Kjøller, L.; Christensen, L.; Duffy, M. J . The Urokinase-type
Plasminogen Activator System in Cancer Metastasis: A Review.
Int. J . Cancer 1997, 72, 1-22. Rabbani, S. A.; Xing, R. H. Role
of urokinase (uPA) and its receptor (uPAR) in invasion and
metastasis of hormone-dependent malignancies (Review) J . Int.
Oncol. 1998, 12, 911-920.
(3) Deadman, J . J .; Elgendy, S.; Goodwin, C. A.; Green, D.; Baban,
J . A.; Patel, G.; Skordalakes, E.; Chino, N.; Claeson, G.; Kakkar,
V. V.; Scully, M. F. Characterization of a Class of Peptide
Boronates with Neutral P1 Side Chains as Highly Selective
Inhibitors of Thrombin. J . Med. Chem. 1995, 38, 1511-1522.
(4) Schechter, I.; Berger, A. On the size of the active site in
proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27,
157-162.
(5) Mares-Guia, M.; Shaw, E. Studies on the Active Center of
Trypsin. J . Biol. Chem. 1965, 240, 1579-1585.
(6) Markwardt, F. Synthetic, Low Molecular Thrombin Inhibitors.
A New Concept of Anticoagulants. Haemostasis 1974, 3, 185-
202.
(7) Geratz, J . D.; Shaver, S. R.; Tidwell, R. R. Inhibitory Effect of
Amidino-substituted Heterocyclic Compounds on the Amidase
Activity of Plasmin and of High and Low Molecular Weight
Urokinase and on Urokinase-induced Plasminogen Activation.
Thromb. Res. 1981, 24, 73-83.
(8) Geratz, J . D.; Stevens, F. M.; Polakoski, K. L.; Parrish, R. F.;
Tidwell, R. R. Amidino-Substituted Aromatic Heterocycles as
Probes of the Specificity Pocket of Trypsin-Like Proteases. Arch.
Biochem. Biophys. 1979, 197, 551-559.
(9) Walsmann, P.; Horn, H.; Landmann, H.; Markwardt, F.; Stru-
zebecher, J .; Wagner, G. Synthetische Inhibitoren der Serinepro-
teinasen. Pharmazie 1975, 30, 386-389.
(10) Loeffler, L. J .; Mar, E.-C.; Geratz, J . D.; Fox, L. B. Synthesis of
Isosteres of p-Amidinophenylpyruvic Acid. Inhibitors of Trypsin,
Thrombin and Pancreatic Kallikrein. J . Med. Chem. 1975, 18,
287-292.
(11) Stu¨rzebecher, J .; Markwardt, F. Synthetische Inhibitoren der
Serineproteinasen. Pharmazie 1978, 33, 599-602.
(12) Yang, H.; Henkin, J . Selective Inhibition of Urokinase by
Substituted Phenylguanidines: Quantitative Structure-Activity
Relationship Analyses. J . Med. Chem. 1990, 33, 2956-2961.
Yang, H.; Henkin, J . Competitive Inhibitors of Human Uroki-
nase. Fibrinolysis 1992, 6 (Suppl. 1), 31-34.
(13) Katz, B. A.; Mackman, R.; Luong, C.; Radika, K.; Martelli, A.;
Sprengeler, P. A.; Wang, J .; Chan, H.; Wong, L. Structural basis
for selectivity of a small molecule S1-binding submicromolar
inhibitor of urokinase-type plasminogen activator. Chem. Biol.
2000, 7, 299-312.
Novel Serine Protease Inhibition Motif Involving
a Multi-
Centered Short Hydrogen Bonding Network at the Active Site.
J . Mol. Biol. 2001, 307, 1451-1486.
(23) Dunitz, J . D. The Entropic Cost of Bound Water in Crystals and
Biomolecules. Science 1994, 264, 670.
(24) Robinson, B. The Fischer Indole Synthesis; J ohn Wiley and
Sons: New York, 1982.
(25) Wagaw, S.; Yang, B. H.; Buchwald, S. L. A Palladium-Catalyzed
Strategy for the Preparation of Indoles: A Novel Entry into the
Fisher Indole Synthesis. J . Am. Chem. Soc. 1998, 120, 6621-
6622.
(26) Yasuhara, A.; Kanamori, Y.; Kaneko, M.; Numata, A.; Kondo,
Y.; Sakamoto, T. Convenient synthesis of 2-substituted indoles
from 2-ethynylanilines with tetrabutylammonium fluoride. J .
Chem. Soc., Perkin Trans. 1 1999, 529-534.
(27) Fagnola, M. C.; Candiani, I.; Visentin, G.; Cabri, W.; Zarini, F.;
Mongelli, N.; Bedeschi, A. Solid-Phase Synthesis of Indoles Using
the Palladium-Catalysed Coupling of Alkynes with Iodoaniline
Derivatives. Tetrahedron Lett. 1997, 38, 2307-2310.
(28) Rudisill, D. E.; Stille, J . K. Palladium-Catalyzed Synthesis of
2-Substituted Indoles. J . Org. Chem. 1989, 54, 5856-5866.
(29) Larock, R. C.; Yum, E. K. Synthesis of Indoles via Palladium-
Catalyzed Heteroannulation of Internal Alkynes. J . Am. Chem.
Soc. 1991, 113, 6689-6690.
(30) Yasuhara, A.; Sakamoto, T. Deprotection of N-sulfonyl Nitrogen-
Heteroaromatics with Tetrabutylammonium Fluoride. Tetrahe-
dron Lett. 1998, 39, 595-596.
(31) Imakura, Y.; Okimoto, K.; Konishi, T.; Hisazumi, M.; Yamazaki,
J .; Kobayashi, S.; Yamashita, S. Regioselective Cleavage Reac-
tion of the Aromatic Methylenedioxy Ring. V.1) Cleavage with
Sodium Alkoxides-Alcohols, Potassium tert-Butoxide-Alcohols,
Dimsyl Anion-Methyl Alcohol, Metallic Sodium-Alcohols and
Sodium Cyanide in Dipolar Aprotic Solvents. Chem. Pharm.
Bull. 1992, 40, 1691-1696.
(32) Katz, B. A.; Sprengeler, P. A.; Luong, C.; Verner, E.; Elrod, K.;
Kirtley, M.; J anc, J .; Spencer, J .; Breitenbucher, J . G.; Hui, H.
C.; McGee, D.; Allen, D.; Martelli, A.; Mackman, R. L. Engineer-
ing Inhibitors Highly Specific for the S1 sites of Ser190 Trypsin-
Like Serine Protease Drug Targets. Chem. Biol., in press.