Synthesis of Furans through Rearrangement and Cyclocondensation
AgBF4 (0.6 mg, 3.32 μmol) was added to a solution of propargyl
vinyl ether 1a (40 mg, 0.166 mmol) in dry CH2Cl2 (1.6 mL, 0.1 m).
The mixture was heated to 35 °C for 12 h. After filtration through
Celite and concentration, the residue was dissolved in dry MeOH/
EtOAc (2:1, 1.1 mL, 0.15 m), and Pd/C (10.6 mg, 4.98 μmol, 5 mol-
%) was added. The mixture was stirred at room temperature for
1 h under a H2 atmosphere. After filtration through Celite and con-
centration, the crude product was purified by flash chromatography
(cyclohexane/EtOAc = 95:5) to obtain the product (26.8 mg,
0.120 mmol, 72%). Rf = 0.74 (cyclohexane/EtOAc = 4:1) [UV/
CAM]. 1H NMR (600 MHz, CDCl3): δ = 4.27 (q, J = 7.1 Hz, 2
H), 2.53–2.45 (m, 5 H), 2.16 (s, 3 H), 1.48–1.41 (m, 2 H), 1.34 (t,
J = 7.1 Hz, 3 H), 1.33–1.28 (m, 2 H), 0.91 (t, J = 7.3 Hz, 3 H)
ppm. 13C NMR (151 MHz, CDCl3): δ = 165.0, 157.6, 146.0, 119.6,
hyde functionality was smoothly introduced in 63% yield
by using conditions developed by Nicolaou and co-workers
[Equation (1), NMO = N-methylmorpholine N-oxide].[18]
(1)
We finally envisioned to access pyrroles (rather than
furans) through the same process consisting of propargyl– 113.3, 59.7, 33.0, 24.2, 22.7, 14.4, 14.3, 14.1, 11.2 ppm. MS (EI):
m/z (%) = 224.1 (53) [M+], 195.1 (16) [M+ – Et], 182.0 (100) [M+
–
Claisen rearrangement and subsequent cyclocondensation.
To this end, amine 7 was subjected to various noble-metal
catalysts: In the presence of silver salts only trace amounts
of desired pyrrole 8 were obtained, but the use of gold(I)
chloride in 1,2-dichloroethane at 50 °C was found to be
highly efficient to produce the pyrrole core in 80% yield
[Equation (2)].
nPr], 167.0 (18) [M+ – nBu], 153.0 (88), 137.0 (58). HRMS (ESI):
calcd. for C13H21O3 [M + H+] 225.1485; found 225.1485.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, analytical data, and copies of the
1H NMR and 13C NMR spectra.
Acknowledgments
Support of this research by the Deutsche Forschungsgemeinschaft
(DFG) through grant KI 1289/1-3 is gratefully acknowledged. The
authors thank RockwoodLithium for the kind donation of chemi-
cals. A. P. thanks the Deutscher Akademischer Austausdienst
(DAAD) for a Ph.D. fellowship.
(2)
[1] a) X. L. Hou, Z. Yang, H. N. C. Wong, Progress in Heterocyclic
Chemistry (Eds.: G. W. Gribble, T. L. Gilchrist), Pergamon, Ox-
ford, UK, 2003, vol. 15, p. 167–205; b) B. A. Keay, P. W. Dib-
ble, Comprehensive Heterocyclic Chemistry II (Eds.: A. R. Ka-
tritzky, C. W. Rees, E. F. V. Scriven), Elsevier, Oxford, UK,
1997, vol. 2, p. 395–436.
[2] B. H. Lipshutz, Chem. Rev. 1986, 86, 795.
[3] Reviews: a) X. L. Hou, H. Y. Cheung, T. Y. Hon, P. L. Kwan,
T. H. Lo, S. Y. Tong, H. N. C. Wong, Tetrahedron 1998, 54,
1955; b) S. F. Kirsch, Org. Biomol. Chem. 2006, 4, 2076; c)
D. M. D’Souza, T. J. J. Müller, Chem. Soc. Rev. 2007, 36, 1095;
d) G. Balme, D. Bouyssi, N. Monteiro, Heterocycles 2007, 73,
87.
[4] Selected works: a) A. Sniady, K. A. Wheeler, R. Dembinski,
Org. Lett. 2005, 7, 1769; b) C.-K. Jung, J.-C. Wang, M. J. Kris-
che, J. Am. Chem. Soc. 2004, 126, 4118; c) S. Kramer, J. L. H.
Madsen, M. Rottländer, T. Skrydstrup, Org. Lett. 2010, 12,
2758; d) K.-D. Umland, A. Palisse, T. T. Haug, S. F. Kirsch,
Angew. Chem. Int. Ed. 2011, 50, 9965; Angew. Chem. 2011, 123,
10140; e) Z. Chen, G. Huang, H. Jiang, H. Huang, X. Pan, J.
Org. Chem. 2011, 76, 1134; f) A. Blanc, K. Tenbrink, J.-M.
Weibel, P. Pale, J. Org. Chem. 2009, 74, 4360; g) X. Du, H.
Chen, Y. Chen, J. Chen, Y. Liu, Synlett 2011, 1010; h) H. Tsuhi,
K.-i. Yamagata, Y. Ueda, E. Nakamura, Synlett 2011, 1015; i)
R. B. Dateer, K. Pati, R.-S. Liu, Chem. Commun. 2012, 48,
7200.
[5] a) A. V. Gulevich, A. S. Dudnik, N. Chernyak, V. Gevorgyan,
Chem. Rev. 2013, 113, 3084; b) S. F. Kirsch, Synthesis 2008,
3183; c) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395.
[6] [Au]: a) J. Muzart, Tetrahedron 2008, 64, 5815; b) Z. Li, C.
Brouwer, C. He, Chem. Rev. 2008, 108, 3239; c) A. Corma, A.
Leyva-Pérez, M. J. Sabater, Chem. Rev. 2011, 111, 1657; d) N.
Krause, C. Winter, Chem. Rev. 2011, 111, 1994; e) D. Garay-
alde, C. Nevado, Beilstein J. Org. Chem. 2011, 7, 767; f) M.
Rudolph, A. S. K. Hashmi, Chem. Commun. 2011, 47, 6536;
[Ag]: g) J.-M. Weibel, A. Blanc, P. Pale, Chem. Rev. 2008, 108,
Conclusions
In conclusion, we reported a silver-catalyzed route to
highly substituted furans through a domino sequence in-
volving Claisen-type rearrangement and cyclocondensation.
We also showed that this strategy is applicable for the syn-
thesis of pyrroles. Further work is currently underway to
expand this strategy to the synthesis of thiophenes.
Experimental Section
Synthesis of Ethyl 4-(But-1-en-1-yl)-2,5-dimethylfuran-3-carboxyl-
ate (2a) as a Representation of General Procedure A: Under a N2
atmosphere, AgBF4 (0.8 mg, 4.16 μmol) was added to a solution
of propargyl vinyl ether 1a (50.5 mg, 0.208 mmol) in dry CH2Cl2
(2.1 mL, 0.1 m). The mixture was heated to 35 °C for 12 h. After
filtration through Celite and concentration, the crude product was
purified by flash chromatography (cyclohexane/EtOAc = 95:5) to
obtain the product (40.9 mg, 0.184 mmol, 87%) as a mixture of
E/Z isomers.
Synthesis of Ethyl 4-Butyl-2,5-dimethylfuran-3-carboxylate (5a) as
a Representation of General Procedure B: Under a N2 atmosphere,
Eur. J. Org. Chem. 2014, 7095–7098
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7097