S. Komba, Y. Ito / Tetrahedron Letters 42 (2001) 8501–8505
8505
In conclusion, a novel method for the preparation of
LacNAc and sialyl LacNAc was developed using b-
galactosidase-mediated intramolecular transglycosyla-
tion.
20. Usui, T.; Kubota, S.; Ohi, H. Carbohydr. Res. 1993, 244,
315–323.
21. For a general discussion on the mechanism of retaining
glycosidases, see: Zechel, D. L.; Withers, S. G. Acc.
Chem. Res. 2000, 33, 11–18.
22. Ivanova, I. A.; Ross, A. J.; Ferguson, M. A. J.; Nikolaev,
A. V. J. Chem. Soc., Perkin Trans. 1 1999, 1743–1753.
23. Kanto chemical Mightysil RP-18 (GP 250-3.0) was used
as the reverse-phase analytical HPLC column. The sol-
vent system used was 100% solvent A (0.1% TFA aq.) for
5 min, then the linear gradient 0–30% of solvent B (90%
CH3CN aq. with 0.1% TFA) for 30 min.
24. (a) Yoon, J. H.; Rhee, J. S. Carbohydr. Res. 2000, 327,
377–383; (b) Usui, T.; Morimoto, S.; Hayakawa, Y.;
Kawaguchi, M.; Murata, T.; Matahira, Y.; Nishida, Y.
Carbohydr. Res. 1996, 285, 29–39; (c) Priya, K.;
Loganathan, D. Tetrahedron 1999, 55, 1119–1128.
25. 1H NMR (400 MHz, CDCl3): l 8.35 (d, 1H, JPh4,Ph5 2.7
Hz, Ph6), 8.23 (dd, 1H, JPh3,Ph4 9.0 Hz, JPh4,Ph6 2.7, Ph4),
5.64 (d, 1H, JNH,2 9.3 Hz, NH), 5.36 (d, 1H, J3,4 3.2 Hz,
H-4Gal), 5.11 (dd, 1H, J1,2 8.1 Hz, J2,3 10.5, H-2Gal),
5.04 (t, 1H, J2,3=J3,4 8.3 Hz, H-3GlcN), 4.98 (dd, 1H,
J2,3 10.5 Hz, J3,4 3.4, H-3Gal), 4.83 (d, 1H, Jgem 13.4 Hz,
PhCH), 4.65 (d, 1H, Jgem 13.4 Hz, PhCH%), 4.55 (dd, 1H,
Jgem 12.2 Hz, J5,6 2.9, H-6Gal), 4.50 (d, 1H, J1,2 7.8 Hz,
H-1Gal), 4.41 (d, 1H, J1,2 7.6 Hz, H-1GlcN), 3.89 (t, 1H,
Acknowledgements
This work was supported by the Special Postdoctoral
Researchers Program at RIKEN. We thank Dr. H.
Koshino and his staff for the NMR measurements, and
Ms. A. Takahashi for technical assistance.
References
1. (a) Fukuda, M. Biochem. Biophys. Acta 1985, 780, 119–
150; (b) Hummel, M.; Hedrich, H. C.; Hasilik, A. Eur. J.
Biochem. 1997, 245, 428–433; (c) Maemura, K.; Fukuda,
M. J. Biol. Chem. 1992, 267, 24379–24386.
2. Feizi, T.; Gooi, H. C.; Childs, R. A.; Picard, J. K.;
Uemura, K.; Loomes, L. M.; Thorpe, S. J.; Hounsell, E.
F. Biochim. Soc. Trans. 1984, 12, 591–596.
3. Iozzo, R. V.; Murdoch, A. D. FASEB J. 1996, 10,
598–614.
4. Lasky, L. A. Annu. Rev. Biochem. 1995, 64, 113–139.
5. Powell, L. D.; Jain, R. K.; Matta, K. L.; Sabesan, S.;
Varki, A. J. Biol. Chem. 1995, 270, 7523–7532.
6. Jain, R. K.; Huang, B.-G.; Chandrasekaran, E. V.;
Matta, K. L. Chem. Commun. 1997, 23–24.
7. Wrodnigg, T. M.; Stutz, A. E. Angew. Chem., Int. Ed.
1999, 38, 827–828.
J
5,6=J5,6% 7.1 Hz, H-5Gal), 3.81 (t, 1H, J3,4=J4,5 8.5 Hz,
H-4GlcN), 3.59 (m, 1H, H-5GlcN), 2.36, 2.15, 2.14, 2.09,
2.06, 2.05, 2.05, 1.97 (8s, 24H, 7Ac and NAc) ppm.
HRMS (FAB) calcd for C35H44N2O21Na (M+Na+):
851.2334. Found: 851.2403.
26. For the combined use of b-galactosidase and sialyltrans-
ferase, see: Herrmann, G. F.; Ichikawa, Y.; Wandrey, C.;
Gaeta, F. C. A.; Paulson, J. C.; Wong, C. H. Tetrahedron
Lett. 1993, 34, 3091–3094.
27. For the substrate specificity of this enzyme, see: Wla-
sichuk, K. B.; Kashem, M. A.; Nikrad, P. V.; Bird, P.;
Jiang, C.; Venot, A. P. J. Biol. Chem. 1993, 268, 13971–
13977.
8. Sherman, A. A.; Yudina, O. N.; Shashkov, A. S.; Men-
shov, V. M.; Nifant’ev, N. E. Carbohydr. Res. 2001, 330,
445–458.
9. Figueroa-Perez, S.; Verez-Bencomo, V. Carbohydr. Res.
1999, 317, 29–38.
10. Lattova, E.; Petrus, L. Carbohydr. Res. 1992, 235, 289–
293.
11. Nakano, T.; Ito, Y.; Ogawa, T. Carbohydr. Res. 1993,
243, 43–69.
12. Alais, J.; Veyrie`res, A. Carbohydr. Res. 1990, 207, 11–31.
13. Wong, T. C.; Lemieux, R. U. Can. J. Chem. 1984, 62,
1207–1213.
14. Lemieux, R. U.; Ratcliffe, R. M. Can. J. Chem. 1979, 57,
1244–1251.
15. Blixt, O.; Brown, J.; Schur, M. J.; Wakarchuk, W.;
Paulson, J. C. J. Org. Chem. 2001, 66, 2442–2448 and
references cited therein.
16. (a) Wymer, N.; Toone, E. J. Curr. Opin. Chem. Biol.
2000, 4, 110–119; (b) Palcic, M. M. Curr. Opin. Biotech-
nol. 1999, 10, 616–624; (c) Watt, G. M.; Lowden, P. A.
S.; Flisch, S. L. Curr. Opin. Str. Biol. 1997, 7, 652–660.
17. Vic, G.; Tran, C. H.; Scigelova, M.; Crout, D. H. G.
Chem. Commun. 1997, 169–170.
28. 1H NMR (500 MHz, D2O): l 8.06 (d, 1H, JPh4,Ph5 3.2 Hz,
Ph6), 8.01 (dd, 1H, JPh3,Ph4 9.2 Hz, JPh4,Ph6 3.2, Ph4), 6.49
(d, 1H, JPh3,Ph4 9.2 Hz, Ph3), 4.75 (d, 1H, Jgem 12.8 Hz,
PhCH), 4.63 (d, 1H, Jgem 13.3 Hz, PhCH%), 4.57 (d, 1H,
J1,2 8.2 Hz, H-1Gal), 4.40 (d, 1H, J1,2 7.8 Hz, H-1GlcN),
2.64 (dd, 1H, J3eq.,4 4.1 Hz, Jgem 11.9, H-3eq. sialic acid),
2.00 and 1.95 (2s, 6H, 2NAc), 1.66 (dd, 1H, J3ax.,4=Jgem
11.9 Hz, H-3ax. sialic acid) ppm; 13C NMR (150 MHz,
D2O, NaOD and MeOH): l 176.4 (CPh2), 175.1 (CNAc
=
O GlcN), 174.8 (CNAc=O sialic acid), 173.7 (C-1 sialic
acid), 133.1 (CPh5), 127.6 (CPh4-H), 127.2 (CPh6-H), 126.5
(CPh1), 119.6 (CPh3-H), 103.8 (C-1 Gal), 100.5 (C-1
GlcN), 100.4 (C-2 sialic acid), 80.2 (C-4 GlcN), 74.8 (C-5
GlcN), 74.0 (C-5 Gal), 73.1 (C-3 Gal), 72.7 (C-3 GlcN),
72.7 (C-6 sialic acid), 71.9 (C-8 sialic acid), 70.8 (C-2
Gal), 68.9 (C-4 Gal), 68.6 (C-7 sialic acid), 68.4 (C-4
sialic acid), 67.0 (CBn-H2), 63.6 (C-6 Gal), 62.8 (C-9 sialic
acid), 60.7 (C-6 GlcN), 55.4 (C-2 GlcN), 52.2 (C-5 sialic
acid), 40.5 (C-3 sialic acid), 22.3 and 22.2 (2CNAc-H3)
ppm.
18. Fang, J. W.; Xie, W. H.; Li, J.; Wang, P. G. Tetrahedron
Lett. 1998, 39, 919–922.
19. Sakai, K.; Katsumi, R.; Ohi, H.; Usui, T.; Ishido, Y. J.
Carbohydr. Chem. 1992, 11, 553–565.
29. Since compound 15 can be a substrate for the sialyltrans-
ferase, degalactosylation of the resultant trisaccharide
might be functional as a minor pathway leading to 18.