10.1002/adsc.201900372
Advanced Synthesis & Catalysis
A. Fan, Tetrahedron, 2009, 65, 4984–4991. h) A.
Gansäuer, H. Bluhm, M. Pierobon, J. Am. Chem. Soc.,
1998, 120, 12849–12859.
12 T. Caneva, L. Sperni, G. Strukul, A. Scarso, RSC
Adv., 2016, 6, 83505–83509.
13 M. W. C. Robinson, A. M. Davies, R. Buckle, I.
Mabbett, S. H. Taylor, A. E. Graham, Org. Biomol.
Chem., 2009, 7, 2559–2564.
14 D. J. Vyas, E. Larionov, C. Besnard, L. Guénée, C.
Mazet, J. Am. Chem. Soc., 2013, 135, 6177–6183.
15 N. Humbert, D. J. Vyas, C. Besnard, C. Mazet, Chem.
Commun., 2014, 50, 10592–10595.
16 R. H. Crabtree, Platin. Met. Rev., 1978, 22, 126–129.
17 A. Cabré, G. Sciortino, G. Ujaque, X. Verdaguer, A.
Lledós, A. Riera, Org. Lett., 2018, 20, 5747–5751.
18 For selected examples about H2 activation of iridium-
P,N complexes, see: a) H. Li, C. Mazet, Acc. Chem.
Res., 2016, 49, 1232–1241. b) L. Mantilli, C. Mazet,
Tetrahedron Lett., 2009, 50, 4141–4144. c) H. Li, D.
Fiorito, C. Mazet, ACS Catal., 2017, 7, 1554–1562.
19 a) R. N. H. Iii, R. S. Stabler, D. B. Repke, J. M. Kress,
K. A. Walker, R. S. Martin, J. M. Brothers, M.
Ilnicka, S. W. Lee, T. Mirzadegan, Bioorg. Med.
Chem. Lett., 2010, 20, 3436–3440. b) I. Ether, G.
Lazarevski, G. Kobrehel, J. Antibiot. 1996, 49, 1066–
1069. c) H. M. L. Davies, A. Ni, Chem. Commun.,
2006, 3110–3112. d) P. Ramesh, D. Suman, K. S. N.
Reddy, Synthesis, 2018, 50, 211–226. e) G. M.
Nicholas, T. F. Molinski, Tetrahedron, 2000, 56,
2921–2927.
2 a) Q. H. Xia, H. Q. Ge, C. P. Ye, Z. M. Liu, K. X. Su,
Chem. Rev., 2005, 105, 1603–1662. b) J. G. Smith,
Synthesis, 1984, 629–656. c) B. M. Smith, E. J.
Skellam, S. J. Oxley, A. E. Graham, Org. Biomol.
Chem., 2007, 5, 1979–1982. d) M. W. C. Robinson,
R. Buckle, I. Mabbett, G. M. Grant, A. E. Graham,
Tetrahedron Lett., 2007, 48, 4723–4725.
3 a) J. Meinwald, S. S. Labana, M. S. Chadha, J. Am.
Chem. Soc., 1963, 85, 582–585. b) B. M. Trost,
Science, 1991, 254, 1471. For recent stereoselective
rearrangements, see: c) K. Suda, T. Kikkawa, S. I.
Nakajima, T. Takanami, J. Am. Chem. Soc., 2004
,
126, 9554–9555. d) R. Hrdina, C. E. Müller, R. C.
Wende, K. M. Lippert, M. Benassi, B. Spengler, P. R.
Schreiner, J. Am. Chem. Soc., 2011, 133, 7624–7627.
e) K. Suda, S. I. Nakajima, Y. Satoh, T. Takanami,
Chem. Commun., 2009, 1255–1257. f) T. Kimura, N.
Yamamoto, Y. Suzuki, K. Kawano, Y. Norimine, K.
Ito, S. Nagato, Y. Iimura, M. Yonaga, J. Org. Chem.,
2002, 67, 6228–6231.
4 a) J. R. Lamb, M. Mulzer, A. M. LaPointe, G. W.
Coates, J. Am. Chem. Soc., 2015, 137, 15049-15054.
b) Z. Chen, Y. Xiao, J. Zhang, Eur. J. Org. Chem.
2013, 4748–4751. c) A. K. Pandey, P. Banerjee, Asian
J. Org. Chem. 2016, 5, 360–366. d) L. F. Wang, Z. F.
20 E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965
87 (6), 1353-1364.
,
,
,
Shi, X. P. Cao, B. S. Li, P. An, Chem. Commun. 2014
,
50, 8061–8064. e) A. K. Pandey, A. Ghosh, P.
Banerjee, Eur. J. Org. Chem. 2015, 2517–2523. f) J.
R. Donald, R. J. K. Taylor, Synlett, 2009, 59–62. g)
Y. Kita, J. Futamura, Y. Ohba, Y. Sawama, J. K.
Ganesh, H. Fujioka, J. Org. Chem., 2003, 68, 5917–
5924. h) J. B. Lewis, G. W. Hedrick, J. Org. Chem.,
1965, 30, 4271–4275. i) M. Szostak, J. Aube, J. Am.
Chem. Soc., 2009, 131, 13246–13247.
21 E. Larionov, H. Li, C. Mazet, Chem. Commun., 2014
50, 9816–9826.
22 B. Wüstenberg, A. Pfaltz, Adv. Synth. Catal., 2008
350, 174–178.
23 M. R. Tiddens, R. J. M. Klein Gebbink, M. Otte, Org.
Lett., 2016, 18, 3714–3717.
24 S. Morales, F. G. Guijarro, J. L. García Ruano, M. B.
Cid, J. Am. Chem. Soc., 2014, 136, 1082–1089.
25 A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys.
Chem. B 2009, 113, 6378-6396.
26 S. Grimme, J. Antony, S.Ehrlich, H. Krieg, J. Chem.
Phys. 2010, 132, 154104.
27 After 24 h of reaction the product was racemic.
However, at shorter reaction times (4 h) the reaction
product had 26% ee of the right isomer (S) thus
confirming the mechanism and indicating that the
aldehyde isomerized in the reaction medium.
Probably, the Lewis acid character of the iridium
complexes promote the isomerization of the aldehyde
which is known to be easy due to its benzylic
character.[28]
5 B. Rickborn, in Comprehensive Organic Synthesis, B.
M. Trost, Ed., Pergamon: Oxford, 1991, vol. 3,
chapter 3.3., pp 733–775.
6 a) Y. Kita, S. Kitagaki, Y. Yoshida, S. Mihara, D. F.
Fang, M. Kondo, S. Okamoto, R. Imai, S. Akai, H.
Fujioka, J. Org. Chem., 1997, 62, 4991–4997. b) J. M.
Fraile, J. A. Mayoral, L. Salvatella, J. Org. Chem.,
2014, 79, 5993–5999.
7 R. Sudha, K. Malola Narasimhan, V. Geetha
Saraswathy, S. Sankararaman, J. Org. Chem., 1996
61, 1877–1879.
,
8 H. O. House, J. Am. Chem. Soc., 1955, 77, 3070–
3075.
9 a) M. W. C. Robinson, K. S. Pillinger, A. E. Graham,
Tetrahedron Lett., 2006, 47, 5919–5921. b) M. W. C.
Robinson, K. S. Pillinger, I. Mabbett, D. A. Timms,
A. E. Graham, Tetrahedron, 2010, 66, 8377–8382.
10 B. C. Ranu, U. Jana, J. Org. Chem., 1998, 63, 8212–
8216.
28. S. Chercheja, S. K. Nadakudity, P. Eilbracht, Adv. Synth.
Catal. 2010, 352, 637–643.
11 I. Karamé, M. L. Tommasino, M. Lemaire,
Tetrahedron Lett., 2003, 44, 7687–7689.
6
This article is protected by copyright. All rights reserved.