practical asymmetric synthesis of (R)-DDMS using the novel
(R)-triethylmethylsulfinamide ((R)-TESA).
Scheme 2. Modular Asymmetric Synthesis of Chiral
Sulfinamides
We envisioned that application of an enantio- or diaste-
reoselective addition to imine 3 (asymmetric C-C bond
forming reaction) would provide a straightforward route to
a high-yielding synthesis for optically pure DDMS. Imine 3
could be obtained from the corresponding hindered aldehyde
4b, which in turn can be readily accessed from known nitrile
4a (Scheme 1).5
Scheme 1. Retro-Synthetic Analysis for DDMS
We thought that application of enantiopure sulfinamide6,7
as a chiral auxiliary for preparation of optically pure DDMS
was a viable alternative method, provided a range of chiral
sulfinamides with both antipodes can be accessed in large
quantities with a reasonable price.8 In this context, we recent-
ly reported the first, practical, and modular approach for
production of several enantiopure sulfinamides using a key
chemoselective ring opening of a recyclable, aminoindanol
based endo-1,2,3-oxathiazolidine-2-oxide (6, Scheme 2).9
With these optically pure chiral sulfinamides in hand, our
initial effort in the asymmetric synthesis of (R)-DDMS was
focused on the identification of an efficient and scalable
chiral sulfinamide auxiliary for the diastereoselective addition
to imine 3. To begin our investigations, a variety of chiral
alkyl or aryl sulfinyl aldimines 9a-f were prepared from
aldehyde 4b and the corresponding sulfinamides 8a-f in
excellent yields using known method.10 Additions of i-BuLi
to imines were conducted at -20 °C in the presence of BF3‚
OEt2,11a and the results are summarized in Table 1.
Table 1. Addition of i-BuLi to Sulfinyl Aldimines 9a
(5) Krishnamurthy, D.; Han, Z.; Wald, S. A.; Senanayake, C. H.
Tetrahedron Lett. 2002, 43, 2331.
(6) For the use of p-toluenesulfinamide as auxiliary in the synthesis of
chiral nitrogen containing compounds see: (a) Davis, F. A.; Reddy, R. E.;
Szewczyk, J. M.; Portonovo, P. S. Tetrahedron Lett. 1993, 34, 6229. (b)
Davis, F. A.; Zhou, P.; Chen, B.-C. Chem. Soc. ReV. 1998, 27, 13. (c) Davis,
F. A.; Reddy, R. E.; Szewczyk, J. M.; Reddy, G. V.; Portonovo, P. S.;
Zhang, H.; Fanelli, D.; Reddy, R. T.; Zhou, P.; Carroll, P. J. J. Org. Chem.
1997, 62, 2555. (d) Zhou, P.; Chen, B.-C.; Davis, F. A. AdVances in Sulfur
Chemistry; Rayner, C. M., Ed.; JAL Press: Greenwich, CT, 2000; Vol. 2,
p 249. (e) Davis, F. A.; Lee, S.; Zhang, H.; Fanelli, D. L. J. Org. Chem.
2000, 65, 8704.
(7) For the use of tert-butylsulfinamide as auxiliary in the synthesis of
chiral nitrogen containing compounds see: (a) Liu, G.; Cogan, D. A.;
Ellman, J. A. J. Am. Chem. Soc. 1997, 119, 9913. (b) Owens, T. D.;
Hollander, F. J.; Oliver, A, G.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123,
1539 and references therein. (c) Borg, G.; Cogan, D. A.; Ellman, J. A.
Tetrahedron Lett. 1999, 40, 6709. (d) Cogan, D. A.; Liu, G.; Ellman, J. A.
Tetrahedron 1999, 55, 8883. (e) Davis, F. A.; McCoull, W. J. Org. Chem.
1999, 64, 3396. (f) Tang, T. P.; Volkman, S. K.; Ellman, J. A. J. Org.
Chem. 2001, 66, 8772. (g) Lee, Y.; Silverman, R. B. Org. Lett. 2000, 2,
303. (h) Borg, G.; Chino, M.; Ellman, J. A. Tetrahedron Lett. 2001, 42,
1433. (i) Prakash, G. K. S.; Mandal, M.; Olah, G. A. Org. Lett. 2001, 3,
2847. (j) Prakash, G. K. S.; Mandal, M.; Olah, G. A. Angew. Chem., Int.
Ed. 2001, 40, 589. (k) Lee, A.; Ellman, J. A. Org. Lett. 2001, 3, 3707. (l)
Barrow, J. C.; Ngo, P. L.; Pellicore, J. M.; Selnick, H. G.; Nantermet, P.
G. Tetrahedron Lett. 2001, 42, 2051. (m) Pflum, D. A.; Krishnamurthy,
D.; Han, Z.; Wald, S. A.; Senanyake, C. H. Tetrahedron Lett. 2002, 43,
923. (n) Plobeck, N.; Powell, N. Tetrahedron: Asymmetry 2002, 13, 303.
(8) (R)-TBSA is available from Aldrich Chemical Co. only in gram
quantities ($130/g).
entry
9, R
% yieldb
% eec
1
2
3
4
5
6
C(CH3)3 (9a )
85
82
77
75
-
88
88
80
80
-
C(C2H5)3 (9c)
C(CH3)2C2H5 (9b)
Ad (9e)
4-methylphenyl (9d )d
2-mesityl (9f)
60
50
a See Supporting Information for detailed experimental procedures.
b Except for entry 1, yields are based on the HPLC analysis. c % ee values
are determined by chiral HPLC analysis. d No desired product was formed.
Treatment of i-BuLi with aldimine 9a followed by acidic
removal of the tert-butylsulfinyl group provided 88% ee of
(10) (a) Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A.
J. Org. Chem. 1999, 64, 1278. (b) All new sulfinyl aldimine gave satisfactory
analytical data.
(11) (a) Preliminary studies showed the use of BF3‚OEt2 minimizes the
formation of byproducts. (b) Observed stereochemistry is consistent with
previously proposed nonchelation controlled models.7n
(9) Han, Z.; Krishnamurthy, D.; Grover, P.; Fang, Q. K.; Senanayake,
C. H. J. Am. Chem. Soc. 2002, 124, 7880.
4026
Org. Lett., Vol. 4, No. 23, 2002