C O M M U N I C A T I O N S
Scheme 1 a
a Key: (a) (R)-ALB (0.1 mol %), KO-t-Bu (0.09 mol %), MS 4A, THF (49 M), 91%, >99% ee; (b) 2-ethyl-2-methyl-1,3-dioxolane, catalytic TsOH; (c)
LiCl, H2O, DMSO, 140 °C, 97% in two steps; (d) LDA, N-methoxy-2-(4-methoxybenzyloxy)-N-methylacetamide, THF, -78 °C, 72% (conversion 82%);
(e) NaBH3CN, TiCl4, THF-CH2Cl2, -55 °C; (f) DCC, CuCl, benzene, reflux, 70% in two steps; (g) DIBAL, CH2Cl2, -78 °C; (h) TIPSOTf, Et3N, CH2Cl2,
-78 °C, 98% in two steps; (i) catalytic CSA, acetone, 62% (conversion 90%); (j) lithium 2,2,6,6-tetramethylpiperidide, TMSCl, THF, -78 °C; (k)
Pd2(dba)3‚CHCl3 (5 mol %), diallyl carbonate, MeCN, 90% in two steps; (l) LDA, TMSCl, THF, -78 °C; (m) aq. HCHO, Yb(OTf)3 (20 mol %), THF; (n)
DBU, CH2Cl2, 57% in three steps from the mixture of regioisomers 13 (conversion 80%) (o) I2, DMAP, CH2Cl2, 89%; (p) 1-iodo-2-trimethylstannylbenzene,
Pd2(dba)3‚CHCl3 (5 mol %), Ph3As (20 mol %), CuI (10 mol %), DMF, quantitative; (q) SEMCl, i-Pr2NEt, CH2Cl2, quantitative; (r) 3HF‚Et3N, THF,
quantitative; (s) Tf2O, i-Pr2NEt, then 2,2-bis(ethylthio)ethylamine, CH2Cl2, -78 °C; (t) Zn, MeOH-aqueous NH4Cl, 77% in two steps; (u) DMTSF (5
equiv), MS 4A, CH2Cl2 (0.005 M), 86%; (v) NaBH3CN, TiCl4, THF-CH2Cl2, -78 °C, 68%; (w) 1.0 N HCl in MeOH, 55 °C; (x) Ac2O, pyridine; (y)
NaOMe, MeOH; (z) TIPSCl, imidazole, DMF-CH2Cl2, 4 °C, 51% in four steps; (aa) NiCl2, NaBH4, EtOH/MeOH (4:1), 61% isolated yield after 3 times
process; (bb) SO3‚Py, Et3N, DMSO; (cc) 3HF‚Et3N, THF 83% in two steps; (dd) NaOMe, MeOH, 40 °C; (ee) malonic acid, NaOAc, Ac2O, AcOH, 110 °C,
42% in two steps.
(4) (a) Woodward, R. B.; Cava, M. P.; Ollis, W. D.; Hunger, A.; Daeniker,
deactivated Raney Ni in acetone, however, promoted considerable
H. U.; Schenker, K. J. Am. Chem. Soc. 1954, 76, 4749; Woodward, R.
migration of exocyclic olefin (C19-C20) to endocyclic olefin
B.; Cava, M. P.; Ollis, W. D.; Hunger, A.; Daeniker, H. U.; Schenker, K.
(C20-C21).12 Eventually, Ni boride14 emerged as a promising
Tetrahedron 1963, 19, 247. (b) Magnus, P.; Giles, M.; Bonnert, R.; Kim,
C. S.; McQuire, L.; Merritt, A.; Vicker, N. J. Am. Chem. Soc. 1992, 114,
candidate. Although a conventional protocol caused over-reduction
4403; Magnus, P.; Giles, M.; Bonnert, R.; Johnson, G.; McQuire, L.;
instead of migration, by changing the solvent (EtOH:MeOH ) 4:1)
and addition order, 20 was obtained in 91% yield based on
consumed starting material with high selectivity (>10:1).6 Consecu-
tive SO3‚Py oxidation of the primary alcohol and deprotection of
the TIPS group afforded (+)-diaboline (21)15 through epimerization
of the C16 stereocenter. Finally, removal of the acetyl group
provided the crude Wieland-Gumlich aldehyde, which was con-
verted to (-)-strychnine (1)6 by the established method.4
In conclusion, an enantioselective total synthesis of (-)-
strychnine was accomplished through the use of the highly practical
catalytic asymmetric Michael reaction as well as a tandem cycliza-
tion that simultaneously constructed B- and D-rings. Moreover,
newly developed reaction conditions for thionium ion cyclization,
reduction of the imine moiety, and desulfurization were pivotal to
complete the synthesis. The described chemistry paves the way for
the synthesis of more advanced Strychnos alkaloids for chemical
biology studies.
Deluca, M.; Merritt, A.; Kim, C. S.; Vicker, N. J. Am. Chem. Soc. 1993,
115, 8116. (c) Knight, S. D.; Overman, L. E.; Pairaudeau, G. J. Am. Chem.
Soc. 1993, 115, 9293. Knight, S. D.; Overman, L. E.; Pairaudeau, G. J.
Am. Chem. Soc. 1995, 117, 5776. (d) Stork, G. Disclosed at the Ischia
Advanced School of Organic Chemistry, Ischia Porto, Italy, September
21, 1992. (e) Kuehne, M. E.; Xu, F. J. Org. Chem. 1993, 58, 7490. Kuehne,
M. E.; Xu, F. J. Org. Chem. 1998, 63, 9427. (f) Rawal, V. H.; Iwasa, S.
J. Org. Chem. 1994, 59, 2685. (g) Sole´, D.; Bonjoch, J.; Garc´ıa-Rubio,
S.; Peidro´, E.; Bosch, J. Angew. Chem., Int. Ed. 1999, 38, 395; Sole´, D.;
Bonjoch, J.; Garc´ıa-Rubio, S.; Peidro´, E.; Bosch, J. Chem. Eur. J. 2000,
6, 655. (h) Ito, M.; Clark, C. W.; Mortimore, M.; Goh, J. B.; Martin, S.
F. J. Am. Chem. Soc. 2001, 123, 8003. (i) Nakanishi, M.; Mori, M. Angew.
Chem., Int. Ed. 2002, 41, 1934. (j) Bodwell, G. B.; Li, J. Angew. Chem.,
Int. Ed. 2002, 41, 3261.
(5) (a) Amat, M.; Linares, A.; Bosch, J. J. Org. Chem. 1990, 55, 6299. (b)
Shin, K.; Moriya, M.; Ogasawara, K. Tetrahedron. Lett. 1998, 39, 3765
and references therein.
(6) See Supporting Information for details.
(7) Minami, I.; Takahashi, K.; Shimizu, I.; Kimura, T.; Tsuji, J. Tetrahedron
1986, 42, 2971 and references therein.
(8) (a) Kobayashi, S. Chem. Lett. 1991, 2087. (b) Kobayashi, S.; Hachiya, I.
J. Org. Chem. 1994, 59, 3590.
(9) Both diastereomers were expected to be applicable to the synthesis because
the C16 stereocenter can be epimerized during the last stage. Unexpected
aromatization, however, proceeded in the next iodination step when 14â
was used.
Acknowledgment. This work was supported by RFTF and
Encouragement of Young Scientists (A) of Japan Society for the
Promotion of Science.
(10) (2-Nitrophenyl)ketone moiety was selected as a latent form of the indoline
based on the previous results, see ref 4g.
(11) Easy retro-1,4-additions of 8-aryl-2-azabicyclo[3.3.1]nonan-7-ones were
reported, see: Bonjoch, J.; Quirante, J.; Sole´, D.; Castells, J.; Galceran,
M.; Bosch, J. Tetrahedron 1991, 47, 4417.
(12) For a general review, see: Caube`re, P.; Coutrot, P. In ComprehensiVe
Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford,
1991; Chapter 4.3, Vol. 8, p 835.
Supporting Information Available: Experimental details for the
preparation of all new compounds and complete characterization with
copies of their 1H, 13C, and DEPT NMR spectra (PDF). This material
(13) The transformation of strychnine to neostrychnine by normal Raney Ni
in EtOH was reported, see: Beddoes, R. L.; Gorman, A. A.; Prescott, A.
L. Acta Crystallogr. 1994, C50, 447 and references therein.
(14) Boar, R. B.; Hawkins, D. W.; McGhie, J. M. J. Chem. Soc., Perkin Trans.
1 1973, 654.
(15) (a) Nicoletti, M.; Goulart, M. O. F.; De Lima, R.; Goulart, A. E.; Delle
Monache, F.; Marini, B. G. B. J. Nat. Prod. 1984, 47, 953. (b) Wenkert,
E. Cheung, H. T. A.; Gottlieb, H. E. J. Org. Chem. 1978, 43, 1099 and
references therein.
References
(1) For a representative review, see: Bonjoch, J.; Sole´, D. Chem. ReV. 2000,
100, 3455.
(2) (a) Shibasaki, M.; Sasai, H.; Arai, T. Angew. Chem., Int. Ed. Engl. 1997,
36, 1236. (b) Shimizu, S.; Ohori, K.; Arai, T.; Sasai, H.; Shibasaki, M. J.
Org. Chem. 1998, 63, 7547. (c) Xu, Y.; Ohori, K.; Ohshima, T.; Shibasaki,
M. Tetrahedron 2002, 58, 2585.
(3) The numbering system and ring labeling based on the biogenetic
interrelationship of indole alkaloids is used throughout this paper: Le
Men, J.; Taylor, W. I. Experientia 1965, 21, 508.
JA028457R
9
J. AM. CHEM. SOC. VOL. 124, NO. 49, 2002 14547