the new strategy, it should be especially applicable to
O-linked glycopeptides that often contain glycan clusters.
Moreover, homogeneous reaction conditions can avoid the
decrease of reaction rate and yield associated with solid-
phase synthesis for these compounds. To test the hypothesis,
the strategy was used to synthesize N-terminal glycopeptide
1 of asialoglycophorin AM containing three O-linked cancer-
related T antigens (Scheme 1).
and Thr derivatives 2, 3, and 4 that contain a free R-linked
T antigen. The preparation of R-linked glycosyl amino acids
is one of the critical issues in O-glycopeptide synthesis. Many
studies have been directed to solve this problem,17-20 but
there is still no general method to realize the reaction with
predictable stereochemistry, especially when oligosaccharide
donors are used. Consequently, our first task was to develop
an approach for the preparation of free glycosyl amino acids
2, 3, and 4.
To obtain the desired R-linkage during the glycosylation
of Ser and Thr, the amino group of galactosamine had to be
protected by a nonparticipating group. For this purpose, an
azido group was used as a latent amino group.17 A partially
protected derivative 5 of D-galatal was used as the starting
material to prepare the disaccharide donor 12 (Scheme 2),
Scheme 1
Scheme 2
Asialoglycophorin AM is the desialylated structure of
glycophorin AM, a major transmembrane sialoglycoprotein
of the human erythrocyte.7 Their N-terminal sequence
contains numerous Ser and Thr residues that are modified
by T and sialylated T antigens, respectively. Because
asialoglycophorin AM is relevant to oncological changes,8-10
its structure has gained significant interest as a research target
for cancer therapy. For example, short glycopeptide segments
of asialoglycophorin AM have been coupled with proteins,
and the resultant conjugates were investigated as potential
cancer vaccines.11-14 Indeed, chemical synthesis of glyco-
phorin A or asialoglycophorin A glycopeptides by itself is
an important subject.15,16
As shown in Scheme 1, the synthesis of glycopeptide 1
required three key building blocks, i.e., the glycosylated Ser
(7) Tomita, M.; Marchesi, V. T. Proc. Natl. Acad. Sci. U.S.A. 1975, 72,
2964-2968.
(8) Springer, G. F.; Desai, P. R.; Banatwala, I. J. Natl. Cancer Inst. 1975,
54, 335-339.
(9) Dausset, J.; Moullec, J.; Bernard, J. Blood 1959, 14, 1079-1093.
(10) Springer, S. Science 1984, 224, 1198.
(11) Kunz, H.; Birnbach, S. Angew. Chem., Int. Ed. Engl. 1986, 25, 360-
363.
(12) Kunz, H.; Birnbach, S. Carbohydr. Res. 1990, 202, 207-223.
(13) Kuduk, S. D.; Schwarz, J. B.; Chen, X.; Glunz, P. W.; Sames, D.;
Ragupathi, G.; Livingston, P. O.; Danishefsky, S. J. J. Am. Chem. Soc.
1998, 120, 12474-12485.
(14) Klich, G.; Paulsen, H.; Meyer, B.; Meldal, M.; Bock, K. Carbohydr.
Res. 1997, 299, 33-48.
(15) See review: Nakahara, Y. Trends Glycosci. Glycotechnol. 2003,
15, 257-273.
(16) (a) Bencomo, V. V.; Sinay, P. Glycoconjugate J. 1984, 1, 5-8. (b)
Ferrari, B.; Pavia, A. A. Tetrahedron 1985, 41, 1939-1944. (c) Paulsen,
H.; Merz, G.; Peters, S.; Weichert, U. Liebigs Ann. Chem. 1990, 1165-
1173. (d) Nakahara, Y.; Iijima, H.; Sibayama, S.; Ogawa, T. Tetrahedron
Lett. 1990, 31, 6897-6900. (e) Ciommer, M.; Kunz, H. Synlett 1991, 593-
595. (f) Nakahara, Y.; Iijima, H.; Shibayama, S.; Ogawa, T. Carbohydr.
Res. 1991, 216, 211-225. (g) Iijima, H.; Nakahara, Y.; Ogawa, T.
Tetrahedron Lett. 1992, 33, 7907-7910. (h) Nakahara, Y.; Iijima, H.;
Ogawa, T. Tetrahedron Lett. 1994, 35, 3321-3324. (i) Klich, G.; Paulsen,
as the transformation of glycals to corresponding 2-azido
sugars is well documented.13,21
The equatorial 3-OH of 5 was more reactive than 4-OH,
so it was possible to regioselectively glycosylate 5 at -78
°C with an R-trichloroacetimidate (6) as the glycosyl donor22
and a catalytic amount of trimethylsilyl triflate (TMSOTf,
H.; Meyer, B.; Meldal, M.; Bock, K. Carbohydr. Res. 1997, 299, 33-48.
(j) Schwarz, J. B.; Kuduk, S. D.; Chen, X.; Sames, D.; Glunz, P. W.;
Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 2662-2673. (k) Ando, S.;
Nakahara, Y.; Ito, Y.; Ogawa, T. Carbohydr. Res. 2000, 329, 773-780.
(17) See review: Arsequell, G.; Valencia, G. Tetrahedron: Asymmetry
1997, 8, 2839-2876.
(18) Herzner, H.; Reipen, T.; Schultz, M.; Kunz, H. Chem. ReV. 2000,
100, 4495-4537.
(19) Seitz, O. ChemBioChem 2000, 1, 214-246 and references therein.
(20) Davis, B. G. Chem. ReV. 2002, 102, 579-601.
(21) Lemieux, R.; Ratcliffe, R. M. Can. J. Chem. 1979, 57, 1244-1251.
3590
Org. Lett., Vol. 7, No. 16, 2005