Table 1 31P{1H} NMR data for the ligands
quite rigid ligand framework. Preliminary results confirm the
excellent ligand properties of the P3Chir molecules. The Ni(II
)
4JP1P2
Hz
/
3JP2P3
/
Hz
complexes [((R)C-(S)Fe-(S)P-P3Chir)Ni(CH3CN)]BF4 (5) and
[((R)C-(S)Fe-(R)P-P3Chir)Ni(CH3CN)]BF4 (6) were readily iso-
lated in the solid state and characterized in solution by NMR
spectroscopy. Sharp resonances were observed in both 31P{1H}
Entry
d P(1)
d P(2)
d P(3)
1
1
2
2
3
4
epi-A
epi-B
224.50 (d) 20.16 (dd) 33.42 (d) 18.3 50.2
225.57 (d) 21.24 (dd) 33.37 (d) 37.7 52.0
1
and H NMR spectra. The 31P{1H} NMR parameters indicate
(R)C-(S)Fe-(S)P 11.7 (br s) 32.0 (br s) 33.2 (d)
(R)C-(S)Fe-(R)P 11.8 (br s) 32.8 (br s) 32.8 (br s)
(R)C-(S)Fe-(S)P 225.89 (d) 22.02 (t) 212.07 (d) 36.0 32.7
(R)C-(S)Fe-(R)P 225.70 (d) 20.27 (dd) 213.32 (d) 12.9 35.3
43.8
the complexes to adopt a square-planar arrangement with trans
P(1) and P(3) phosphorus atoms.¶ The use of P3Chir complexes
with Ni(II), Rh(
I
), Ru(II) and Ir( ) metal ions in enantioselective
I
reactions is currently under way in our laboratories.
In conclusion, we have shown that triphosphine ligands
combining ferrocenyl, carbon and phosphorus chirality can be
obtained in very good yield by resolution of diborane protected-
phosphineoxide precursors, followed by stereoconservative
reduction.
In CDCl3, 161.98 MHz, 294 K. Chemical shifts in ppm, J in Hz.
Thanks are due to D. Masi for technical assistance and to
COST D24 chemistry action for support.
Notes and references
‡ (R)C-(S)Fe-(S)P-P3Chir = (R)-1-[(S)-2-diphenylphosphino)ferrocenyl]e-
thyl-(S)-[phenylphosphin-2-(diphenylphosphino)ethane].
§
Crystal data for (R)C-(S)Fe-(R)P-2: single crystals of (R)C-(S)Fe-(R)P-2
were obtained by recrystallization from CH2Cl2UCH3OH. C44H47FeB2OP3,
M = 762.24, orthorhombic, space group P212121 (no. 19), a = 11.436(15),
b = 31.504(5), c = 11.270(3) Å, V = 4060(5) Å3, T = 293(2) K, Z = 4,
m(Mo-Ka) = 0.522 mm21, 3202 measured reflections, 3202 independent
reflections, R indices (all data) R = 0.1055 and wR = 0.1368, Flack
parameter = 20.04(5).
Crystal data for 3: single crystals of 3 were obtained by recrystallization
from CH3OH. C44H41FeP3, M
= 718.53, orthorhombic, space group
P212121 (no. 19), a = 12.117(2), b = 15.381(9), c = 19.922(5) Å, V =
3713(2) Å3, T = 293(2) K, Z = 4, m(Mo-Ka) = 0.566 mm21, 2729
measured reflections, 2729 independent reflections, R indices (all data) R =
0.1179 and wR = 0.1423, Flack parameter = 0.01(5).
b208384a/ for crystallographic data in CIF or other electronic format.
Fig. 2 ORTEP drawing of (R)C-(S)Fe-(R)P-2. Selected bond lengths (Å) and
angles (°): P(1)UB(1) 1.923(12), P(2)UB(2) 1.910(11), P(3)UO(1) 1.470(6),
P(2)UC(11) 1.848(9); C(2)UC(11)UP(2)UC(13) 40.36(2), C(3)UC(2)U
C(11)UP(2) 45.79(2).
¶
31P{1H} NMR data (CD3CN, 161.98 MHz, 294 K). 5: d 6.68 (dd, P(1)),
84.20 (dd, P(2)), 65.68 (dd, P(3)), 2JP1P2 80.2, 2JP1P3 212.5, 2JP2P3 46.7 Hz.
6: d 12.50 (dd, P(1)), 74.12 (dd, P(2)), 62.40 (dd, P(3)), 2JP1P2 82.9, 2JP1P3
213.0, 2JP2P3 44.0 Hz.
1 F. A. Cotton and B. Hong, Prog. Inorg. Chem., 1992, 40, 179.
2 (a) H. Brunner and W. Zettlmeier, Handbook of Enantioselective
Catalysis with Transition Metal Compounds, VCH, Weinheim, 1993,
vol. 1 and 2; (b) R. Noyori, Asymmetric Catalysis in Organic Synthesis,
John Wiley & Sons, New York, 1994.
3 (a) M. J. Burk and R. L. Harlow, Angew. Chem., Int. Ed. Engl., 1990, 29,
1462; (b) M. J. Burk, J. E. Feaster and R. L. Harlow, Tetrahedron:
Asymmetry, 1991, 2, 569; (c) T. R Ward, L. M. Venanzi, A. Albinati, F.
Lianza, T. Gerfin, V. Gramlich and G. M. Ramos Tombo, Helv. Chim.
Acta, 1991, 74, 983; (d) G. Jia, H. M. Lee and I. D. Williams,
Organometallics, 1996, 15, 4235; (e) H. Heidel, J. Scherer, A. Asam, G.
Huttner, O. Walter and L. Zsolnai, Chem. Ber., 1995, 128, 293; (f) R. B.
King, J. Bakos, C. D. Hoff and L. Markó, J. Org. Chem., 1979, 44, 3095;
(g) C. R. Johnson and T. Imamoto, J. Org. Chem., 1987, 52, 2170; (h) H.
M. Lee, C. Bianchini, G. Jia and P. Barbaro, Organometallics, 1999, 18,
1961.
Fig. 3 ORTEP drawing of 3. Selected bond lengths (Å) and angles (°):
P(2)UC(11) 1.873(10); C(2)UC(11)UP(2)UC(13) 263.82(2), C(3)UC(2)U
C(11)UP(2) 101.87(2).
4 (a) P. Barbaro and A. Togni, Organometallics, 1995, 14, 3570; (b) P.
Barbaro, C. Bianchini and A. Togni, Organometallics, 1997, 16, 3004;
(c) P. Barbaro, C. Bianchini, W. Oberhauser and A. Togni, J. Mol. Catal.
A, Chemical, 1999, 145, 139.
Fig. 1 enables the large-scale preparation of the P3Chir ligands
in excellent overall yields using cheap and commercially
available reagents through simple manipulations. It is antici-
pated that as many as four stereoisomers can be prepared
starting from either (R)-(S)-PPFA (as described here) or (S)-(R)-
PPFA hence allowing a fine tuning of stereochemical control. It
is also worth noting that the P3Chir ligands can form metal
complexes displaying both five- and six-membered chelate
rings. Chelation to a metal is espected to significantly reduce the
number of available competing conformations, resulting in a
5 For a review, see: T. Hayashi, in Ferrocenes: Homogeneous Catalysis,
Organic Synthesis, Materials Science, ed. A. Togni and T. Hayashi,
VCH, Weinheim, 1995, pp. 105U142.
6 A. Togni, Chimia, 1996, 50, 86.
7 No kinetic resolution of the racemic secondary phosphine was observed.
See also: A. Togni, C. Breutel, M. C. Soares, N. Zanetti, T. Gerfin, V.
Gramlich, F. Spindler and G. Rihs, Inorg. Chim. Acta, 1994, 222, 213.
8 T. Imamoto, T. Kusumoto, N. Suzuki and K. Sato, J. Am. Chem. Soc.,
1985, 107, 5301.
9 Reductions using silane derivatives were unsucessful due to noticeable
epimerization at the P(2) center.
CHEM. COMMUN., 2002, 2672–2673
2673