throughs in the chemistry of sulfinyl derivatives is the
development of efficient approximations for the synthesis
of sulfinamides6,7 and the corresponding sulfinylimines.
Accordingly, the exceptional behavior of the chiral sulfinyl
group in sulfinylimines as activator, chiral controller, and
finally as useful protective group makes the sulfinamides
an extremely versatile chiral ammonia equivalent.8,9 On the
other hand, recent studies have demonstrated that hindered
alkyl substituents on the sulfur confer better stereochemical
control in different processes compared to their aryl
counterparts.10-13 These results promoted an active search
of new and more hindered sulfinylating agents, of which
there are a number in the literature.14 Surprisingly, the
synthesis of functionalized sterically demanding sulfinating
agents did not attract much interest. Significantly, the high
interest in the synthesis of complex molecules on solid
support and the recent use of chiral sulfoxides as Lewis bases
in organocatalysis make the synthesis of conveniently
functionalized sterically hindered sulfinylating agents an
attractive research goal. With these premises in mind, we
started a research program for development of an efficient
route for the synthesis of enantiomerically pure functionalized
sterically demanding thiosulfinates.15 In the present work we
report our preliminary results on the catalytic enantioselective
oxidation of sterically hindered disulfide diols and the corre-
sponding diesters and diethers I using two different catalytic
systems. The first system employs an oxovanadium complex
derived from indanol Schiff base 1, which represents the
actual state of the art in the oxidation of sterically hindered
alkyl disulfides,16 and the carbohydrate Schiff base 217
(Scheme 1). The second system is based on the Shi organo-
surprisingly has never been used in the synthesis of chiral
sulfinyl derivatives.21 Aliphatic aldehydes 6 and 7, with an
enolizable proton, react with sulfur monochloride (S2Cl2) to
give 2,2,5,5-tetraalkyl (ethyl or cyclohexyl)-3,4-dithiahexane-
1,6-dial 8 and 9 in excellent yields. A chemoselective
reduction of the dialdehydes with sodium borohydride
afforded the corresponding diols. Acylation or etherification
of these diols affords the fully protected disulfides 12-15
as white crystalline compounds in general.
It is worth mentioning that following the modular strategy
described in Scheme 2 various sterically hindered disulfides
Scheme 2
with different protective groups can be obtained. The
possibility of changing the protective group enhances the
probability of tuning the structure of the disulfide for a high
(6) Davis, F. A.; Reddy, R. E.; Szewczyk, J. M.; Reddy, V.; Portonovo,
P. S.; Zhang, H.; Fanelli, D.; Reddy, R. T.; Zhou, P.; Carroll, P. J. J. Org.
Chem. 1997, 62, 2555.
(7) Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997, 119,
9913.
(8) (a) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002,
35, 984. (b) Ellman, J. A. Pure. Appl. Chem. 2003, 75, 39.
(9) (a) Davis, F. A.; Zhou, P.; Chen, B. C. Chem. Soc. ReV. 1998, 27,
13. (b) Zhou, P.; Chen, B. C.; Davis, F. A. Tetrahedron 2004, 60,
8003.
Scheme 1
(10) In Michael addition: Casey, M.; Manage, A. C.; Nezhat, L.
Tetrahedron Lett. 1988, 29, 5821.
(11) In the synthesis of chiral amines: (a) Liu, G.; Cogan, D. A.; Owens,
T. D.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64,
1278. (b) Owens, T. D.; Hollander, F. J.; Oliver, A. G.; Ellman, J. A. J.
Am. Chem. Soc. 2001, 123, 1539.
(12) Garc´ıa-Ruano, J. L.; Ferna´ndez, I.; del Prado, M.; Alcudia, A.
Tetrahedron: Asymmetry 1996, 7, 3407.
(13) Adrio, J.; Carretero, J. C. J. Am. Chem. Soc. 1999, 121, 7441.
(14) Han, Z.; Krishnamurthy, D.; Grover, P.; Fang, Q. K.; Senanayake,
C. H. J. Am. Chem. Soc. 2002, 124, 7880.
(15) Dragoli, D. R.; Burdett, M. T.; Ellman, J. A. J. Am. Chem. Soc.
2001, 123, 10127.
(16) Weix, D. J.; Ellman, J. A. Org. Lett. 2003, 5, 1317.
(17) Cucciolito, M. E.; Del Littto, R.; Roviello, G.; Ruffo, F. J. Mol.
Catal. A: Chem. 2005, 236, 176.
(18) (a) Hickey, M.; Goeddel, D.; Crane, Z.; Shi, Y. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 5794. (b) Crane, Z.; Goeddel, D.; Gan, Y.; Shi, Y.
Tetrahedron 2005, 61, 6409.
(19) (a) Wu, X.-Y.; She, X.; Shi, Y. J. Am. Chem. Soc. 2002, 124, 8792.
(b) Nieto, P.; Molas, P.; Benet-Buccholz, Vidal-Ferran, A. J. Org. Chem.
2005, 70, 10143.
(20) In the course of this work, Colonna’s group has reported on the
oxidation of tert-butyl disulfide with this system: Colonna, S.; Piroti, V.;
Drabowizcz, J.; Brebion, F.; Fensterbank, L.; Malacria, M. Eur. J. Org.
Chem. 2005, 1727.
catalytic process and utilizes chiral diooxiranes derived from
D-fructose (3 and 4)18-20 and D-glucose (5) (Scheme 1).
The synthesis of the starting disulfides was achieved using
an approximation developed more than 3 decades ago, which
(5) (a) Kobayashi, S.; Ogawa, C.; Konishi, H.; Sugiura, M. J. Am. Chem.
Soc. 2003, 125, 6610. (b) Massa, A.; Malkov, A. V.; Kocovky, P. Scettri,
A. Tetrahedron Lett. 2003, 44, 7179. (c) Rowlands, G.; Barnes, W. K. Chem.
Commun. 2003, 2712. (d) Ferna´ndez, I.; Valdivia, V.; Gori, B.; Alcudia,
F.; AÄ lvarez, E.; Khiar, N. Org. Lett. 2005, 7, 1307.
(21) (a) Hayashi, K. Macromolecules 1970, 3, 5. (b) Roy, B.; du
Moulinet, d’hardemare, A.; Fontecave, M. J. Org. Chem. 1994, 59, 7019.
(c) Stec, W. J.; Karwowski, B.; Boczkowska, M.; Guga, P.; Koziolkiewicz,
M.; Sochacki, M.; Wieczorek, M. W.; Blaszyk, J. J. Am. Chem Soc. 1998,
120, 7156.
1256
Org. Lett., Vol. 9, No. 7, 2007