ACS Catalysis
Research Article
dihydride V to deliver the selective α-alkylated products with
regeneration of the catalytically active unsaturated intermediate
I. Rapid formation of the α-alkylated product as shown in
Figure 1b suggests that this pathway is predominantly
operative. However, formation of a minor amount of vinyl
REFERENCES
■
(1) (a) Huang, F.; Liu, Z.; Yu, Z. Angew. Chem., Int. Ed. 2016, 55,
862−875. (b) Obora, Y. ACS Catal. 2014, 4, 3972−3981.
(c) Gunanathan, C.; Milstein, D. Science 2013, 341, 1229712.
(d) Watson, A. J. A.; Williams, J. M. J. Science 2010, 329, 635−636.
(e) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv. Synth.
1
nitrile intermediate (as observed in Figure 1b, H NMR and
GC) observed during the progress of the reaction indicates the
possible dissociation of the vinyl nitrile, which can undergo
insertion into Ru−H upon reaction with Ru dihydride
intermediate V to generate the intermediate VII as delineated
in Scheme 4c. Further elimination of Ru-alkyl ligand and ligand
backbone N−H proton can provide the α-alkylated arylmethyl
nitrile product and regenerate the intermediate I.
́
Catal. 2007, 349, 1555−1575. (f) Guillena, G.; Ramon, D. J.; Yus, M.
Chem. Rev. 2010, 110, 1611−1641. (g) Faisca Phillips, A. M.;
Pombeiro, A. J. L.; Kopylovich, M. N. ChemCatChem 2017, 9, 217−
246. (h) Obora, Y.; Ishii, Y. Synlett 2011, 2011, 30−51.
(2) (a) Nixon, T. D.; Whittlesey, M. K.; Williams, J. M. J. Dalton
Trans. 2009, 753−762. (b) Bahn, S.; Imm, S.; Neubert, L.; Zhang, M.;
̈
Neumann, H.; Beller, M. ChemCatChem 2011, 3, 1853−1864.
(c) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681−
703. (d) Pan, S.; Shibata, T. ACS Catal. 2013, 3, 704−712.
(e) Ketcham, J. M.; Shin, I.; Montgomery, T. P.; Krische, M. J.
Angew. Chem., Int. Ed. 2014, 53, 9142−9150.
CONCLUSION
■
In summary, we have demonstrated facile ruthenium-catalyzed
α-alkylation of arylmethyl nitriles using alcohols as alkylating
reagents and ruthenium pincer complex 1, in which amine-
amide metal−ligand cooperation is operative, which facilitated
the overall transformation. Notably, using a minimal catalyst
load (0.5 mol %) and base (1 mol %), various arylmethyl
nitriles can be efficiently and selectively α-alkylated with an
assortment of linear alcohols in excellent yields. Interestingly,
this efficient alkylation is also extended to ethylation as well as
challenging methylation reactions using ethanol and methanol,
respectively. Chemoselective alkylation by primary alcohols was
also demonstrated in the presence of secondary alcohols in an
intermolecular fashion. This green catalytic transformation
follows the principle of the borrowing hydrogen strategy. The
ruthenium pincer catalyst 1 successfully oxidized primary
alcohols to aldehydes and also formed a [2 + 2] cycloadduct
with nitriles, which tautomerizes to its enamine form to
undergo Michael addition, leading to condensation reactions.
Subsequent hydrogenation of the intermediate vinyl nitrile
(predominantly bound to ruthenium and present in a minor
amount in free form) provides the selective α-alkylated
products.
(3) (a) Grigg, R.; Hasakunpaisarn, A.; Kilner, C.; Kongkathip, B.;
Kongkathip, N.; Pettman, A.; Sridharan, V. Tetrahedron 2005, 61,
9356−9367. (b) Wu, Z. L.; Li, Z. Y. Tetrahedron: Asymmetry 2001, 12,
3305−3312. (c) Kulp, S. S.; Mcgee, M. J. J. Org. Chem. 1983, 48,
4097−4098. (d) Im, D. S.; Cheong, C. S.; Lee, S. H.; Youn, B. H.;
Kim, S. C. Tetrahedron 2000, 56, 1309−1314. (e) Takaya, H.; Yoshida,
K.; Isozaki, K.; Terai, H.; Murahashi, S. I. Angew. Chem., Int. Ed. 2003,
42, 3302−3304. (f) Dei, S.; Romanelli, M. N.; Scapecchi, S.; Teodori,
E.; Chiarini, A.; Gualtieri, F. J. Med. Chem. 1991, 34, 2219−2225.
(g) Hartmann, R. W.; Batzl, C. J. Med. Chem. 1986, 29, 1362−1369.
(4) Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S.; Tongpenyai, N.
Tetrahedron Lett. 1981, 22, 4107−4110.
(5) (a) Lofberg, C.; Grigg, R.; Whittaker, M. A.; Keep, A.; Derrick, A.
̈
J. Org. Chem. 2006, 71, 8023−8027. (b) Anxionnat, B.; Pardo, D. G.;
Ricci, G.; Cossy, J. Org. Lett. 2011, 13, 4084−4087. (c) Sawaguchi, T.;
Obora, Y. Chem. Lett. 2011, 40, 1055−1057.
(6) (a) Taguchi, K.; Nakagawa, H.; Hirabayashi, T.; Sakaguchi, S.;
Ishii, Y. J. Am. Chem. Soc. 2004, 126, 72−73. (b) Onodera, G.;
Nishibayashi, Y.; Uemura, S. Angew. Chem., Int. Ed. 2006, 45, 3819−
3822.
(7) Morita, M.; Obora, Y.; Ishii, Y. Chem. Commun. 2007, 2850−
2852.
(8) Li, F.; Zou, X.; Wang, N. Adv. Synth. Catal. 2015, 357, 1405−
1415.
(9) Turnbull, B. W. H.; Evans, P. A. J. Am. Chem. Soc. 2015, 137,
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
6156−6159.
S
(10) (a) Motokura, K.; Nishimura, D.; Mori, K.; Mizugaki, T.;
Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126, 5662−5663.
(b) Motokura, K.; Fujita, N.; Mori, K.; Mizugaki, T.; Ebitani, K.;
Jitsukawa, K.; Kaneda, K. Chem. - Eur. J. 2006, 12, 8228−8239.
(11) Cheung, H. W.; Li, J.; Zheng, W.; Zhou, Z.; Chiu, Y. H.; Lin, Z.;
Lau, C. P. Dalton Trans. 2010, 39, 265−274.
Experimental procedures, spectral data, and H and 13C
1
NMR spectra of the products (PDF)
(12) Kuwahara, T.; Fukuyama, T.; Ryu, I. Chem. Lett. 2013, 42,
1163−1165.
AUTHOR INFORMATION
Corresponding Author
■
(13) Buil, M. L.; Esteruelas, M. A.; Herrero, J.; Izquierdo, S.; Pastor, I.
M.; Yus, M. ACS Catal. 2013, 3, 2072−2075.
(14) Arseniyadis, S.; Kyler, K. S.; Watt, D. S. Org. React. 1984, 31, 1−
364.
ORCID
Notes
The authors declare no competing financial interest.
(15) Krishnakumar, V.; Chatterjee, B.; Gunanathan, C. Inorg. Chem.
2017, 56, 7278−7284.
(16) Chatterjee, B.; Gunanathan, C. Chem. Commun. 2016, 52,
4509−4512.
(17) Chatterjee, B.; Gunanathan, C. Org. Lett. 2015, 17, 4794−4797.
ACKNOWLEDGMENTS
■
(18) (a) Kaß, M.; Friedrich, A.; Drees, M.; Schneider, S. Angew.
̈
We thank the SERB New Delhi (EMR/2016/002517 and SR/
S2/RJN-64/2010), DAE, and NISER for financial support. We
thank Prof. S. Muthusamy for his kind help in recording IR
spectra of the products. We thank S. Ananthalakshmi and Dr. J.
V. Yeldho for their kind help in revision of this manuscript. S.T.
thanks the UGC for a research fellowship. C.G. is a Ramanujan
Fellow.
Chem., Int. Ed. 2009, 48, 905−907. (b) Kuriyama, W.; Matsumoto, T.;
Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo,
N.; Saito, T. Org. Process Res. Dev. 2012, 16, 166−171. (c) Spasyuk, D.;
Smith, S.; Gusev, D. G. Angew. Chem., Int. Ed. 2013, 52, 2538−2542.
(d) Choi, J. H.; Prechtl, M. H. G. ChemCatChem 2015, 7, 1023−1028.
(e) Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H. J.; Junge, H.;
Gladiali, S.; Beller, M. Nature 2013, 495, 85−90. (f) Li, Y.; Nielsen,
5489
ACS Catal. 2017, 7, 5483−5490