ORGANIC
LETTERS
2002
Vol. 4, No. 18
3119-3121
Anionic Inverse Electron-Demand
1,3-Dipolar Cycloaddition of Nitrones
with Ynolates. Facile Stereoselective
Synthesis of 5-Isoxazolidinones Leading
to â-Amino Acids
Mitsuru Shindo,*,†,‡ Kotaro Itoh,† Chinatsu Tsuchiya,‡ and Kozo Shishido‡
Institute for Medicinal Resources, UniVersity of Tokushima,
Sho-machi 1, Tokushima 770-8505, Japan, and PRESTO,
Japan Science and Technology Corporation
Received July 1, 2002
ABSTRACT
The inverse electron-demand 1,3-dipolar cycloaddition of nitrones with ynolates, followed by quenching with t-BuOH, produced substituted
5-isoxazolidinones with good trans-selectivity. These products were easily converted into â-amino acids.
The 1,3-dipolar cycloaddition of nitrones with alkenes1 is
an important method for preparing isoxazolidines, which can
be converted into numerous building blocks for organic
synthesis. Commonly, these cycloadditions involve the
reaction of an electron-deficient alkene dipolarphile (LUMO)
with a nitrone (HOMO). In inverse electron-demand 1,3-
dipolar cycloadditions, alkenyl ethers or ketene acetals are
used as electron-rich dipolarphiles (HOMO); nitrone (LUMO)
activation by Lewis acids and/or with electron-withdrawing
substituents or high reaction temperature are required.2
However, uncatalyzed anionic 1,3-dipolar cycloadditions of
nonactivated nitrones have not yet been reported, as far as
we know.
Since developing a new synthetic method for ynolates,3
we have continued our investigation of ynolate chemistry,4
including [2 + 2] cycloadditions.3,5 Although ynolates can
be potentially dipolarophilic, there have been no reports on
1,3-dipolar [3 + 2] cycloadditions of ynolates. Herein, we
describe the first anionic inverse electron-demand 1,3-dipolar
cycloaddition of ynolates with nitrones to provide syntheti-
cally useful 5-isoxazolidinones6 leading to â-amino acids
(Scheme 1).
(2) For recent examples, see: (a) Kanemasa, S.; Tsuruoka, T.; Wada, E
Tetrahedron Lett. 1993, 34, 87-90. (b) Seerden, J.-P. G.; Scholte op Reimer,
A. W. A.; Scheeren, H. W. Tetrahedron Lett. 1994, 35, 4419-4422. (c)
Simonsen, K. B.; Bayon, P.; Hazell, R. G.; Gothelf, K. V.; Jorgensen, K.
A. J. Am. Chem. Soc. 1999, 121, 3845-3853. (d) Tamura, O.; Gotanda,
K.; Yoshino, J.; Morita, Y.; Terashima, R.; Kikuchi, M.; Miyawaki, T.;
Mita, N.; Yamashita, M.; Ishibashi, H.; Sakamoto, M. J. Org. Chem. 2000,
65, 8544-8551.
† PRESTO, Japan Science and Technology Corporation.
‡ University of Tokushima.
(1) For reviews, see: (a) Padwa, A. In ComprehensiVe Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 4, p
1069. (b) Carruthers, W. Cycloaddition Reactions in Organic Synthesis;
Pergamon Press: Oxford, 1990. (c) Kobayashi, S., Jorgensen, K. A., Eds.
Cycloaddition Reactions in Organic Synthesis; Pergamon Press: Oxford,
2002. (d) Frederickson, M. Tetrahedron 1997, 53, 403-425. (e) Gothelf,
K. V.; Jorgensen, K. A. Chem. ReV. 1998, 98, 863-909. (f) Gothelf, K.
V.; Jorgensen, K. A. Chem. Commun. 2000, 1449-1458. (g) Padwa, A.,
Pearson, W. H., Eds.; Chemistry of Heterocyclic Compounds; Wiley: New
York, 2002; Vol. 58.
(3) (a) Shindo, M. Tetrahedron Lett. 1997, 38, 4433-4436. (b) Shindo,
M.; Sato, Y.; Shishido, K. Tetrahedron 1998, 54, 2411-2422. (c) Shindo,
M.; Koretsune, R.; Yokota, W.; Itoh, K.; Shishido, K. Tetrahedron Lett.
2001, 42, 8357-8360.
(4) For reviews, see: (a) Shindo, M. Chem. Soc. ReV. 1998, 27, 367-
374. (b) Shindo, M. J. Synth. Org. Chem. Jpn. 2000, 58, 1155-1166. (c)
Shindo, M. Yakugaku Zasshi 2000, 120, 1233-1246. See, also: (d) Shindo,
M.; Sato, Y.; Shishido, K. J. Org. Chem. 2000, 65, 5443-5445. (e) Shindo,
M.; Matsumoto, K. Mori, S.; Shishido, K. J. Am. Chem. Soc. 2002, 124,
6840-6841.
10.1021/ol0264455 CCC: $22.00 © 2002 American Chemical Society
Published on Web 08/08/2002