C O M M U N I C A T I O N S
Amii, H.; Vranicar, L.; Gornitzka, H.; Bourissou, D.; Bertrand, G. J. Am.
Chem. Soc. 2004, 126, 1344.
(6) (a) Sita, L. R.; Kinoshita, I. J. Am. Chem. Soc. 1992, 114, 7024. (b) Sita,
L. R.; Kinoshita, I. J. Am. Chem. Soc. 1991, 113, 5070. (c) Sita, L. R.;
Kinoshita, I. J. Am. Chem. Soc. 1990, 112, 8839.
(7) Zurcher, F.; Nesper, R. Angew. Chem., Int. Ed. 1998, 37, 3314.
(8) (a) Philips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. J. Am.
Chem. Soc. 2002, 124, 5930. (b) Stender, M.; Philips, A. D.; Wright, R.
J.; Power, P. P. Angew. Chem., Int. Ed. 2002, 41, 1785.
(9) All manipulations were carried out under anaerobic and anhydrous
conditions. 3: to a solution of 1 (0.100 g, 0.106 mmol) in n-hexane (3
mL) was added an excess of Me3SiN3 (0.073 g, 0.64 mmol). After the
reaction mixture was stirred at room temperature for 48 h, it was stored
at 5 °C for 2 days to afford dark violet crystals of 3 (0.104 g, 88%). Mp:
145 °C (dec). 1H NMR (d8-toluene, 399.77 MHz): δ -0.30 (s, 18H,
SiMe3), 0.91 (d, 24H, CHMe2), 1.18 (d, 24H, CHMe2), 2.75 (sept, 8H,
CHMe2), 6.91 (m, 6H, Ar-H), 7.10 (m, 12H, Ar-H). 13C NMR (d8-toluene,
100.52 MHz): δ 5.15 (SiMe3), 23.92 (CHMe2), 26.34 (CHMe2), 31.82
(CHMe2), 123.2, 125.9, 129.0, 131.2, 137.2, 139.1, 154.6, 174.4 (Ar-
C). IR (KBr, Nujol): 1928 (w), 1586 (w), 1571 (m), 1552 (w), 1421 (w),
1340 (w), 1318 (w), 1245 (s), 1226 (w), 1178 (w), 1160 (m), 1125 (w),
1070 (w), 1055 (m), 955 (m), 915 (s), 834 (s), 816 (m), 790 (m), 755 (s),
741 (s). UV-vis (n-hexane): λmax ) 521 nm (ꢀ ) 5600).
(10) Crystal data for 3 at 91(2) K with Mo KR (λ ) 0.710 73 Å): monoclinic,
space group C2/c, a ) 23.9746(16), b ) 11.6981(7), and c ) 25.186(2)
Å, â ) 107.243(4)°, R1 ) 0.0385 for 7873 observed reflections (I >
2σ(I)), wR2 ) 0.1056 (all data).
(11) (a) Hitchcock, P. B.; Lappert, M. F.; Thorne, A. J., J. Chem. Soc., Chem.
Commun. 1990, 1587. (b) Ahlemann, J. T.; Roesky, H. W.; Murugavel,
R.; Parisini, E.; Noltemeyer, M.; Schmidt, H. G.; Muller, O.; Herbst Irmer,
R.; Markovskii, L. N.; Shermolovich, Y. G. Chem. Ber. 1997, 130, 1113.
(c) Veith, M.; Rammo, A. Z. Anorg. Allg. Chem. 2001, 627, 662.
(12) (a) Mackay, K. M. The Chemistry of Organic Germanium, Tin, and Lead
Compounds; Patai, S., Ed.; Wiley, Chichester, 1995; Chapter 2. (b) Baines,
K. M.; Stibbs, W. G. AdV. Organomet. Chem 1996, 39. 275.
Figure 2. Representations of the frontier Kohn-Sham orbitals of the
MeGe(µ-NSiH3)2GeMe from DFT calculations.13
The UV-vis spectrum of 3 in n-hexane shows a strong
absorption maximum at λ ) 521 nm (ꢀ ) 5600), which is red-
shifted compared to those of IV (478 nm)3 and V (446 nm).5a This
corresponds to an energy difference of 54.88 kcal/mol, which is
close to the calculated HOMO-LUMO gap (57.97 kcal/mol) for
MeGe(µ-NSiH3)2GeMe.
In summary, the reaction of 1 with the azide Me3SiN3 afforded
a new non-Kekule´ molecule, 3. Compound 3 has Ge-centered
biradical character as indicated by the intense color, the Ge-Ge
separation, and its high reactivity toward solvents.15 The DFT
calculations support no bonding interaction between the two
germanium atoms as well as a singlet ground state. The extent of
the biradical character of 3, as judged by occupancy numbers for
bonding and nonbonding orbitals associated with the two radical
sites, is not currently available, but the similarities of the calculated
singlet-triplet energies for V and 3 suggest their similar oc-
cupancy.16
(13) The geometry optimizations were performed in gaseous phase using DFT
theory with hybrid B3LYP functional. The molecular structure of MeGe-
(µ-NSiH3)2GeMe was first optimized with Los Alamos LanL2DZ basis
set using an effective core potential (ECP) approximation; a subsequent
optimization of the geometry was performed with 6-31g* basis set using
unrestricted calculations with broken symmetry (BS) technique. All the
calculations were performed with the Gaussian 03 package13b and the
representations of the molecular structures and molecular orbitals were
generated with the MOLEKEL program.13b The optimized geometrical
parameters (bond distances (Å) and angles (deg), geometry optimized for
a singlet state) are almost identical with those found in the crystal structure
of 3: Ge1-N1 1.866, Ge1-N1* 1.868, Ge1-C1 1.980, Ge1-Ge1* 2.735;
N1-Ge1-N1* 85.8, Ge1-N1-Ge1* 94.2, N1-Ge1-C1 108.6, Si1-
N1-Ge1 133.0, Si1-N1-Ge1* 132.8. The only exceptions are the angles
between the N-Ge and Ge-C bonds, which are slightly less opened in
the optimized model structure (∆ ) 14.7°). This is most probably related
to the more important sterical constraints imposed by the bulky Dipp
ligand. (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr. T.; Kudin,
K. N. Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyata, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene. M.;
Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo,
J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi,
R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;
Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Ciolowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
ReVision A.1. Gaussian, Inc.: Pittsburgh, PA, 2003. (b) Flukiger, P.; Luthi,
H. P.; Portmann, S.; Weber, J. MOLEKEL 4.3; Swiss Center for Scientific
Computing: Manno (Switzerland), 2000-2002.
Acknowledgment. We thank the National Science Foundation
for support of this work. The work of M. Brynda in Davis was
supported by Swiss National Science Foundation Grant 8220-
067593. We are also grateful to Professor G. Bertrand and M. F.
Lappert17 for useful discussions.
Supporting Information Available: The X-ray data (cif) for 3.
This material is available free of charge via Internet at http://
pubs.acs.org.
References
(1) (a) Grutzmacher, H.; Breher, F. Angew. Chem., Int. Ed. 2002, 41, 4006.
(b) Borden, W. T. Diradicals; Wiley-Interscience: New York, 1998; p
708. (c) Jain, R.; Sponsler, M. B.; Coms, F. D.; Dougherty, D. A. J. Am.
Chem. Soc. 1988, 110, 1356. (d) Nguyen, K. A.; Gordon, M. C.; Boatz,
J. A. J. Am. Chem. Soc. 1994, 116, 9241.
(2) (a) Abe, M.; Adam, W.; Nau, W. M. J. Am. Chem. Soc. 1998, 120, 11304.
(b) Abe, M.; Adam, W.; Heidenfelder, T.; Nau, W. M.; Zhang, X. J. Am.
Chem. Soc. 2000, 122, 2019. (c) Abe, M.; Adam, W.; Hara, M.; Hattori,
M.; Majima, T.; Nojima, M.; Tachibana, K.; Tojo, S. J. Am. Chem. Soc.
2002, 124, 6540.
(3) Niecke, E.; Fuchs, A.; Baumeister, F.; Nieger, M.; Schoeller, W. W.
Angew. Chem., Int. Ed. Engl. 1995, 34, 555.
(4) (a) Baumgartner, T.; Gudat, D.; Nieger, M.; Niecke, E.; Schiffer, T. J. J.
Am. Chem. Soc. 1999, 121, 5953. (b) Niecke, E.; Fuchs, A.; Nieger, M.
Angew. Chem., Int. Ed. 1999, 38, 3028. (c) Niecke, E.; Fuchs, A.; Nieger,
M.; Schmidt, O.; Schoeller, W. W. Angew. Chem., Int. Ed. 1999, 38, 3031.
(d) Niecke, E.; Fuchs, A.; Schmidt, O.; Nieger, M. Phosphorus, Sulfur
Silicon Relat. Elem. 1999, 146, 41. (e) Sugiyama, H.; Ito, S.; Yoshifuji,
M. Angew. Chem., Int. Ed. 2003, 42, 3802.
(14) Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. N. Chem. Phys. Lett.
1998, 149, 537.
(15) Compound 3 also reacts directly with H2 in solution at room temperature
and pressure to give a product that has been identified tentatively as
Ar′(H)Ge(µ-NSiMe3)2Ge(H)Ar′. Details of the reactivity of 3 will be
reported subsequently.
(16) The calculated occupancy for V is ca. 0.17, see: Jung, Y.; Head-Gordon,
M. ChemPhysChem 2003, 4, 522.
(5) (a) Scheschkewitz, D.; Amii, H.; Gornitzka, H.; Schoeller, W. W.;
Bourissou, D.; Bertrand, G. Science 2002, 295, 1880. (b) Schoeller, W.
W.; Rozhenko, A.; Bourissou, D.; Bertrand, G. Chem. Eur. J. 2003, 9,
3611. (c) Scheschkewitz, D.; Amii, H.; Gornitzka, H.; Schoeller, W. W.;
Bourissou, D.; Bertrand, G. Angew. Chem., Int. Ed. 2004, 43, 385. (d)
(17) Professor M. F. Lappert has informed us that he and co-workers have
synthesized a biradicaloid Sn2N2 species with different substtuents and
via a route different than that in Scheme 1.
JA0492182
9
J. AM. CHEM. SOC. VOL. 126, NO. 21, 2004 6511