5
Shanghai
Science
and
Technology
Commission
Table 3
(1315431901300) for their financial support.
Amination of different aryl hydrogens
References and notes
1.
2.
Grünwald, V.; Merseburger, A. S. Onco. Targets Ther. 2012, 5,
111.
Down, K.; Amour, A.; Baldwin, I. R.; Cooper, A. W.; Deakin, A.
M.; Felton, L. M.; Guntrip, S. B.; Hardy, C.; Harrison, Z. A.;
Jones, K. L. J. Med. Chem. 2015, 58, 7381.
Zhao, G.; Li, W. Y.; Chen, D.; Henry, J. R.; Li, H. Y.; Chen, Z.;
Zia-Ebrahimi, M.; Bloem, L.; Zhai, Y.; Huss, K. Mol. Cancer
Ther. 2011, 10, 2200.
Lai, A.; Kahraman, M.; Govek, S.; Nagasawa, J.; Bonnefous, C.;
Julien, J.; Douglas, K.; Sensintaffar, J.; Lu, N.; Lee, K. J. J. Med.
Chem. 2015.
3.
4.
5.
6.
7.
Kashiwa, M.; Sonoda, M.; Tanimori, S. Eur. J. Org. Chem. 2014,
4720.
Li, X.; He, L.; Chen, H.; Wu, W.; Jiang, H. J. Org. Chem. 2013,
78, 3636.
Yu, J.; Lim, J. W.; Kim, S. Y.; Kim, J.; Kim, J. N. Tetrahedron
Lett. 2015, 56, 1432.
8.
9.
Zhang, T. S.; Bao, W. L. J. Org. Chem. 2013, 78, 1317.
Gladstone, W. A. F.; Norman, R. O. C. J. Chem. Soc. 1965, 3048.
10. Folkes, A. J.; Ahmadi, K.; Alderton, W. K.; Alix, S.; Baker, S. J.;
Box, G.; Chuckowree, I. S.; Clarke, P. A.; Depledge, P.; Eccles, S.
A. J. Med. Chem. 2008, 51, 5522.
11. Lee, F. Y.; Lien, J. C.; Huang, L. J.; Huang, T. M.; Tsai, S. C.;
Teng, C. M.; Wu, C. C.; Cheng, F. C.; Kuo, S. C. J. Med. Chem.
2001, 44, 3746.
12. Park, J. W. Patent WO 2007065010 A2, 2007.
13. Kuo, T. H.; Lin, T. H.; Yang, R. S.; Kuo, S. C.; Fu, W. M.; Hung,
H. Y. J. Med. Chem. 2015, 58, 4954.
Substrate Temperature
(oC)
Reaction time
(min)
Yield of cyclized
product (%)
15
18
21
150
150
190
45
45
45
21.5
87.0
35.4
14. Fatiadi, A. J. Synthesis 1976, 1976, 65.
15. Bhatnagar, I.; George, M. V. J. Org. Chem. 1967, 32, 2252.
16. Somogyi, L. Tetrahedron 1985, 41, 5187.
17. Liu, K. T.; Shih, M. H.; Huang, H. W.; Hu, C. J. Synthesis 1988,
715.
which implied an E-Z isomerization prior to the cyclization.
Microwave irradiation of 10f and silica-supported MnO2 at 150
oC for 5 minutes gave a mixture of isomers, 10f and 10g. In this
reaction, 10f would encounter three energy barriers (Table 2,
entry 6) : first, when the temperature rose to 150 oC, 10f
overcame the energy barrier of the isomerization, equilibrium
between 10f and 10g was expected; second, the mixture was
further heated to a higher temperature and eventually overcame
the potential barrier of the cyclization of the more electron-rich
ring, the unsubstituted ring in this case, giving 14f; and finally,
the third energy barrier was overcome at an even higher
temperature, both 12f and 14f were accessible at this stage while
14f had the higher reaction rate. The regioselectivity of this
reaction was an overall result of isomerization and cyclization
affected by reaction temperature and the substituents on the
phenyl rings.
Supplementary Material
Supplementary data
(experimental procedures
and
characterization data for the compounds 1, 2, 3, 5, 7‒9, 10a‒10m,
11a‒11d, 11h‒11m, 12a‒12k, 13h‒13m, 14f‒14k, 14m and
15‒22) can be found, in the online version, at
Deprotection of cyclized products was exemplified by the
acidic hydrolysis of 1-acetylindazole 9. After cyclization, the
crude product was added to a mixture of MeOH and 6N HCl and
heated at reflux for an hour, giving 1H-indazole 2 in 83.6% yield
in two steps.
Conclusion
In conclusion, we developed an efficient and simple method to
synthesize 1-unsubstituted 2-aryl-1H-indazoles via direct C–H
amination. All reagents could be easily handled in open air.
Acknowledgments
We gratefully thank the National Natural Science Foundation
of China (81273365, 81573271, 81422047, 81321092, and
81473243), National Science & Technology Major Project “Key
New
Drug Creation
and Manufacturing
Program”
(2014ZX09304002-008-001 and 2012ZX09301001-007), the