Table 5 (Cont.)
Notes and references
† Representative experimental procedures:
Proline-catalyzed tandem Knoevenagel/hydrogenation reactions: In an
ordinary glass vial equipped with a magnetic stirring bar, solvent (1.0 mL)
was added to the ketone 1 (0.5 mmol), the CH-acid 2 (0.5 mmol) and
the Hantzsch ester 3 (0.5 mmol). The amino acid catalyst 4 (0.1 mmol)
was then added and the reaction mixture stirred at 25 ◦C for the time
indicated in Tables 1–3. The crude reaction mixture was directly loaded
onto a silica gel column with or without aqueous work-up, and pure
tandem products 5 were obtained by column chromatography (silica gel,
hexane–ethyl acetate).
Proline/Cs2CO3 or K2CO3-catalyzed one-pot Knoevenagel/hydrogenation/
alkylation reactions: In an ordinary glass vial equipped with a magnetic
stirring bar, solvent (1.0 mL) was added to the ketone 1 (0.5 mmol), the
CH-acid 2 (0.5 mmol) and the Hantzsch ester 3 (0.5 mmol). The proline
catalyst 4a (0.1 mmol) was added and the reaction mixture stirred at 25 ◦C
for 24–96 h. RCH2I or RCH2Br 7 (2.5 mmol) and K2CO3 or Cs2CO3 (0.4
g) were then added and stirring continued at the same temperature for
7–24 h. The crude reaction mixture was worked up with aqueous NH4Cl
and the aqueous layer extracted with dichloromethane (2 × 20 mL). The
combined organic layers were dried (Na2SO4), filtered and concentrated.
Pure products 8 were obtained by column chromatography (silica gel,
hexane–ethyl acetate).
Entry
10
Base/solvent
Product
Yield (%)a
75
Cs2CO3/DMF
Cs2CO3/DMF
Cs2CO3/DMF
11
12
65
65
Many of the tandem products 5 and 8 are commercially available, or have
been described previously, and their analytical data match literature values.
New compounds were characterized on the basis of IR, 1H and 13C NMR
and analytical data.
1 (a) B. Eckstein and A. Nimrod, Biochim. Biophys. Acta, 1977, 1, 499;
(b) I. A. Watkinson, D. C. Wilton, A. D. Rahimtula and M. M. Akhtar,
Eur. J. Biochem., 1971, 1, 23.
2 H. R. Mahler and E. H. Cordes, Biological Chemistry, Harper & Row,
New York, 1966.
3 I. M. Freser, D. A. Fancher and A. Strother, Pharmacologist, 1968, 10,
203.
a Yield refers to the column-purified product. b Ratio determined by 1H
and 13C NMR analysis.
4 (a) U. K. Pandit, F. R. Mas Cabre, R. A. Gase and M. J. De Nie-
Sarink, J. Chem. Soc., Chem. Commun., 1974, 627; (b) Y. Ohnishi, M.
Kagami, T. Numakunai and A. Ohno, Chem. Lett., 1976, 915; (c) M. J.
De Nie-Sarink and U. K. Pandit, Tetrahedron Lett., 1979, 20, 2449;
(d) K. Nakamura, M. Fujii, A. Ohno and S. Oka, Tetrahedron Lett.,
1984, 25, 3983; (e) U. Eisner and J. Kuthan, Chem. Rev., 1972, 72,
1–42.
5 (a) D. B. Ramachary, M. Kishor and K. Ramakumar, Tetrahedron
Lett., 2006, 47, 651; (b) H. Adolfsson, Angew. Chem., Int. Ed., 2005,
44, 3340; (c) J. W. Yang, M. T. Hechavarria Fonseca and B. List,
Angew. Chem., Int. Ed., 2005, 44, 108; (d) S. G. Ouellet, J. B. Tuttle
and D. W. C. MacMillan, J. Am. Chem. Soc., 2005, 127, 32; (e) S. J.
Garden, C. R. W. Guimara˜es, M. B. Corre´a, C. A. F. de Oliveira,
A. C. Pinto and R. B. de Alencastro, J. Org. Chem., 2003, 68,
8815.
organocatalytic approach to the synthesis of key intermediates
of the pharmaceutical drug cygerol 19 in a single step (Table 5,
entries 10–12). Decyanation followed by hydrolysis of 8aaf or 8abf
furnished the cyclohexylgeranylacetic acid 19, useful for wound
healing, as demonstrated by Joseph and George in their patent
(Scheme 3).7e
6 For reviews, see: (a) W. Notz, F. Tanaka and C. F. Barbas III, Acc. Chem.
Res., 2004, 37, 580–591; (b) B. List, Acc. Chem. Res., 2004, 37, 548–557;
(c) J. Seayad and B. List, Org. Biomol. Chem., 2005, 3, 719–724; (d) P. I.
Dalko and L. Moisan, Angew. Chem., Int. Ed., 2001, 40, 3726–3748;
(e) P. R. Schreiner, Chem. Soc. Rev., 2003, 32, 289–296. For papers,
see: (f) D. B. Ramachary, N. S. Chowdari and C. F. Barbas III, Angew.
Chem., Int. Ed., 2003, 42, 4233 (g) D. B. Ramachary, K. Anebouselvy,
N. S. Chowdari and C. F. Barbas, III, J. Org. Chem., 2004, 69, 5838
(h) D. B. Ramachary and C. F. Barbas, III, Chem.–Eur. J., 2004, 10,
5323 (i) D. B. Ramachary and C. F. Barbas, III, Org. Lett., 2005, 7,
1577 (j) B. List and C. Castello, Synlett, 2001, 11, 1687 (k) M. Edin,
J. E. Backvall and A. Cordova, Tetrahedron Lett., 2004, 45, 7697 (l) N.
Halland, P. S. Aburel and K. A. Jorgensen, Angew. Chem., Int. Ed.,
2004, 43, 1272 (m) D. B. Ramachary, K. Ramakumar and M. Kishor,
Tetrahedron Lett., 2005, 46, 7037–7042 (n) J. T. Suri, D. B. Ramachary
and C. F. Barbas III, Org. Lett., 2005, 7, 1383–1385 (o) N. S. Chowdari,
D. B. Ramachary and C. F. Barbas III, Org. Lett., 2003, 5, 1685–
1688.
Scheme 3
In summary, we have developed direct amino acid/metal
carbonate-catalyzed tandem K/H and K/H/A reactions which
have direct application in drug discovery processes. This exper-
imentally simple and environmentally friendly approach can be
used to construct highly substituted hydrogenated products in a
regioselective fashion with very good yields. For the first time
in organocatalysis, pyridine nucleotide-linked dehydrogenases are
mimicked in the laboratory. Further work is in progress to develop
an asymmetric version of this tandem process.
7 (a) M. Schwarz, O. F. Bodenstein and J. H. Fales, J. Econ. Entomol.,
1970, 63, 429; (b) Y. Imai and T. Kawashima, Jpn. Pat., 1993, CODEN:
JKXXAF JP 05345806 A2 19931227, CAN 121:18122 (in Japanese;
5 pp); (c) P. J. Gilligan and R. G. Wilde, PCT Int. Appl., 2000,
CODEN: PIXXD2 WO 2000059908 A2 20001012, CAN 133:296443
(in English; 118 pp); (d) R. B. Moffett, C. A. Hart and J. Neil, J. Org.
We thank DST (New Delhi) for financial support. M. K.
and G. B. R. thank CSIR (New Delhi) and UGC (New Delhi)
respectively for their research fellowships.
This journal is
The Royal Society of Chemistry 2006
Org. Biomol. Chem., 2006, 4, 1641–1646 | 1645
©