242
K. Sato et al. / Tetrahedron Letters 46 (2005) 237–243
Figure 4. HMQC-TOCSY spectra of a 1:1 mixture of phenyl 1-thio-b-L-[1-13C] and [6-13C]fucopyranoside.
utilization of 13CH3I in this synthesis of L-[6-13C]fucose.
The NMR data for non-labeled fucose and the 13C-la-
beled fucose are shown in Figure 3. NMR data for each
13C-labeled fucose are given in Ref. 9. The HMQC-
TOCSY spectra of the 1:1 mixture of phenyl 1-thio-b-
L-[1-13C] and [6-13C]fucopyranoside is shown in Figure
4. Using this technique enabled us to determine the
chemical shifts and J values of all protons.
Ng, K. K.-S.; Weis, W. I. Biochemistry 1997, 36, 979–988;
(c) Henrichsen, D.; Ernst, B.; Magnani, J. L.; Wang,
W.-T.; Meyer, B.; Peters, T. Angew. Chem., Int. Ed. 1999,
38, 98–102; (d) Homans, S. W. Biochem. Soc. Trans. 1998,
26, 551–560.
4. (a) Aubin, Y.; Prestegard, J. H. Biochemistry 1993, 32,
3422–3428; (b) Salvatore, B. A.; Ghose, R.; Prestegard, J.
H. J. Am. Chem. Soc. 1996, 118, 4001–4008.
5. (a) Sato, K.; Akai, S.; Hiroshima, T.; Aoki, H.; Sakuma,
M.; Suzuki, K. Tetrahedron Lett. 2003, 44, 3513–3516; (b)
Sato, K.; Akai, S.; Sakuma, M.; Kojima, M.; Suzuki, K.
Tetrahedron Lett. 2003, 44, 4903–4907.
6. Gesson, J. P.; Jacquesy, J. C.; Petit, P. Tetrahedron Lett.
1992, 104, 3637–3640.
7. Inch, T. D.; Rich, P. J. Chem., Soc. Sect. C 1968, 13,
1683–1692.
As described above, a practical synthesis of minimally
13C-labeled D-mannose and L-fucose should facilitate
studies on the conformational properties and dynamic
behavior of oligosaccharides that contain mannose and
fucose. This short and efficient 13C-labeling method
should also be applicable for 14C-labeling, facilitating
the preparation of labeled oligosaccharides for reaction
with the corresponding receptor molecules in order to
determine the interaction mechanisms.
8. Luca, L. D.; Giacomelli, G.; Porcheddu, A. J. Org. Chem.
1975, 40, 2764–2769.
9. 1H and 13C NMR data of 13C-labeled mannose and
fucose.
1
D-[1-13C]mannose: H NMR (500 MHz, D2O): d 5.03 (1H,
dd, J1,2 = 1.4 Hz, J1,C = 170.4 Hz, H-1a), 4.75 (1H, dd,
J1,2 = 1.0 Hz, J1,C = 160.5 Hz, H-1b), 3.78 (1H, dd,
J2,3 = 3.3 Hz, H-2b), 3.78 (1H, dd, J2,3 = 3.3 Hz, H-2a),
Acknowledgements
0
This work was partially supported by a ÔHigh-Tech
Research Center ProjectÕ and
(15750148) for Scientific Research from the Ministry
of Education, Science, Sports and Culture, Japan. The
author thanks Professor T. Nakagawa for helpful
discussions.
3.76 (1H, dd, J6,5 = 2.3 Hz, J6;6 ¼ 12:3 Hz, H-6b), 3.73
0
(1H, dd, J6,5 = 2.1 Hz, J6;6 ¼ 12:0 Hz, H-6a), 3.70 (1H, dd,
a
Grant-in-Aid
J3,4 = 9.9 Hz, H-3a), 3.67 (1H, dddd, J5,4 = 9.7 Hz,
J5;6 ¼ 5:9 Hz, J5,C = 1.3 Hz, H-5), 3.61 (1H, dd, H-60a),
0
3.58 (1H, dd, J6 ;5 ¼ 6:3 Hz, H-60b), 3.51 (1H, dd, H-4a),
0
3.51 (1H, dd, J3,4 = 9.7 Hz, H-3b), 3.42 (1H, dd,
J4,5 = 9.7 Hz, H-4b), 3.23 (1H, dddd, J5,C = 2.1 Hz, H-5b);
13C NMR (125 MHz, D2O):
d 94.02 (C-1a), 93.66
(C-1b).
D-[6-13C]mannose: 1H NMR (500 MHz, D2O): d 5.06 (1H,
dd, J1,2 = 1.7 Hz, H-1a), 4.75 (1H, dd, J1,2 = 0.9 Hz, H-1b),
References and notes
1. Miyazaki, T.; Sakakibara, T.; Sato, H.; Kajihara, Y.
J. Am. Chem. Soc. 1999, 121, 1411–1412.
2. Miyazaki, T.; Sato, H.; Sakakibara, T.; Kajihara, Y. J.
Am. Chem. Soc. 2000, 122, 5678–5694. See also references
cited therein.
3.82 (1H, dd, J2,3 = 3.3 Hz, H-2b), 3.81 (1H, dd, J2,3
=
0
3.4 Hz, H-2a), 3.78 (1H, dd, J6,5 = 2.2 Hz, J6;6 ¼ 12:2 Hz,
J6,C = 144.3 Hz, H-6b), 3.73 (1H, dd, J6,5 = 2.2 Hz,
0
J6;6 ¼ 12:2 Hz, J6,C = 144.0 Hz, H-6a), 3.73 (1H, dd,
J3,4 = 9.6 Hz, H-3a), 3.70 (1H, ddd, J5,4 = 10.0 Hz,
3. (a) Weis, W.; Brown, J. H.; Cusack, S.; Paulson, J. C.;
Skehel, J. J.; Wiely, D. C. Nature 1988, 333, 426–431; (b)
0
0
J5;6 ¼ 5:8 Hz, H-5a), 3.64 (1H, ddd, J6 ;C ¼ 143:0 Hz, H-
60a), 3.60 (1H, ddd, J6 ;5 ¼ 6:0 Hz, J6 ;C ¼ 120:8 Hz, H-
0
0