ORGANIC
LETTERS
2007
Vol. 9, No. 26
5617-5620
Amino Acid Derived Enamides:
Synthesis and Aminopeptidase Activity
Richard R. Cesati III,* Greg Dwyer, Reinaldo C. Jones, Megan P. Hayes,
Padmaja Yalamanchili, and David S. Casebier
Pharmaceutical Research and DeVelopment, Bristol-Myers Squibb Medical Imaging,
North Billerica, Massachusetts 01862
Received October 22, 2007
ABSTRACT
Recently developed copper-catalyzed coupling methodology has been applied to the synthesis of amino acid derived enamides. Bond formation
proved to be strongly influenced by protection strategy and vinyl iodide substitution while tolerant of limited side chain functionality. Assessment
of aminopeptidase activity revealed a preference for (E)-1,2-disubstituted constructs.
Interest in the enamide functionality has increased exponen-
tially in recent years due primarily to the expanding number
of biologically relevant molecules in which it is found.1 The
chemo- and stereoselectivity challenges associated with
enamide synthesis in these complex molecular frameworks
has underscored the limitations of conventional methods,
particularly the acylation of imines and ketoximes,2 direct
condensation of aldehydes and amides,3 Curtius rearrange-
ment of R,â-unsaturated acyl azides,4 dehydration of hemi-
aminals,5 and a variety of olefination processes.6 In response,
the synthetic community has rapidly developed a variety of
mild, metal-mediated C-N bond-forming processes,7 includ-
ing Ag-8 and Ru-catalyzed hydroamidation,9 Pd-catalyzed
oxidative amidation of olefins,10 and direct Pd-11 and Cu-
catalyzed12 coupling of amides with vinyl (pseudo) halides.13
Our own interest evolved from a desire to integrate an
alternative pro-drug system within a substrate peptide
designed to target matrix metalloproteinases (MMPs).14 In
(6) (a) Peterson: (i) Hudrlick, P. F.; Hudrlick, A. M.; Rona, R. J.; Misra,
R. N.; Withers, G. P. J. Am. Chem. Soc. 1977, 99, 1993. (ii) Cuevas, J.-C.;
Patil, P.; Snieckus, V. Tetrahedron Lett. 1989, 30, 5841. (iii) Palomo, C.;
Aizpurua, J. M.; Legido, M.; Picard, J. P.; Dunogues, J.; Constantieux, T.
Tetrahedron Lett. 1992, 33, 3903. (iv) Furstner, A.; Brehm, C.; Cancho-
Grande, Y. Org. Lett. 2001, 3, 3955. (b) Horner-Wittig: Couture, A.;
Deniau, E.; Grandclaudon, P. Tetrahedron Lett. 1993, 34, 1479. (c)
Wadsworth-Emmons: (i) Paterson, I.; Cowden, C.; Watson, C. Synlett
1996, 209. (ii) Villa, M. V. J.; Targett, S. M.; Barnes, J. C.; Whittingham,
W. G.; Marquez, R. Org. Lett. 2007, 9, 1631.
(7) For a recent review, see; Dehli, J. R.; Legros, J.; Bolm, C. Chem.
Commun. (Cambridge, UK) 2005, 973.
(8) Sun, J.; Kozmin, S. A. Angew. Chem., Int. Ed. 2006, 45, 4991.
(9) (a) Kondo, T.; Tanaka, A.; Kotachi, S.; Watanabe, Y. J. Chem. Soc.,
Chem. Commun. 1995, 413. (b) Goossen, L. J.; Rauhaus, J. E.; Deng, G.
Angew. Chem., Int. Ed. 2005, 44, 4042.
(1) For selected total syntheses of the salicylate enamide macrolides,
see: (a) Furstner, A.; Dierkes, T.; Thiel, O. R.; Blanda, G. Chem. Eur. J.
2001, 7, 5286. (b) Nicolaou, K. C.; Kim, D. W.; Baati, R. Angew. Chem.,
Int. Ed. 2002, 41, 3701. (c) Wang, X.; Porco, J. A., Jr. J. Am. Chem. Soc.
2003, 125, 6040. For a recent review, see: Yet, L. Chem. ReV. 2003, 103,
4283.
(2) Recent examples: (a) Sun, C.; Weinreb, S. M. Synthesis 2006, 3585.
(b) Savarin, C. G.; Boice, G. N.; Murry, J. A.; Corley, E.; DiMichele, L.;
Hughes, D. Org. Lett. 2006, 8, 3903. For a recent application in the synthesis
of salicylihalamide A, see: Smith, A. B., III; Zheng, J. Tetrahedron 2002,
58, 6455.
(3) (a) Zeeza, C. A.; Smith, M. B. Synth. Commun. 1987, 17, 729. (b)
Kiefel, M. J.; Maddock, J.; Pattenden, G. Tetrahedron Lett. 1992, 33, 3227.
(4) (a) Brettle, R.; Mosedale, A. J. J. Chem. Soc., Perkin. Trans. 1 1988,
2, 185. (b) Snider, B. B.; Song, F. Org. Lett. 2000, 2, 407. (c) Stefanuti, I.;
Smith, S. A.; Taylor, R. J. K. Tetrahedron Lett. 2000, 41, 3735. (d)
Kuramochi, K.; Watanabe, H.; Kitahara, T. Synlett 2000, 397. For a recent
application in the total synthesis of salicylihalamide A, see: Wu, Y.; Liao,
X.; Wang, R.; Xie, X.-S.; De Brabander, J. K. J. Am. Chem. Soc. 2002,
124, 3245.
(10) (a) Hosokawa, T.; Takano, M.; Kuroki, Y.; Murahashi, S.-Y.
Tetrahedron Lett. 1992, 33, 6643. (b) Brice, J. L.; Meerdink, J. E.; Stahl,
S. S. Org. Lett. 2004, 6, 1845. (c) Hansen, A. L.; Skrydstrup, T. J. Org.
Chem. 2005, 70, 5997. (a) Lee, J. M.; Ahn, D.-S.; Jung, D. Y.; Lee, J.; Do,
Y.; Kim, S. K.; Chang, S. J. Am. Chem. Soc. 2006, 128, 12954.
(11) (a) Kozawa, Y.; Mori, M. Tetrahedron Lett. 2002, 43, 111. (b)
Wallace, D. J.; Klauber, D. J.; Chen, C.-y.; Volante, R. P. Org. Lett. 2003,
5, 4749. (c) Willis, M. C.; Brace, G. N.; Holmes, I. P. Synthesis 2005,
3229. (d) Klapars, A.; Campos, K. R.; Chen, C.-y.; Volante, R. P. Org.
Lett. 2005, 7, 1185. (e) Barluenga, J.; Moriel, P.; Aznar, F.; Valdes, C.
Org. Lett. 2007, 9, 275.
(5) (a) Wang, X.; Porco, J. A., Jr. J. Org. Chem. 2001, 66, 8215. (b)
Bayer, A.; Maier, M. E. Tetrahedron 2004, 60, 6665.
10.1021/ol7025729 CCC: $37.00
© 2007 American Chemical Society
Published on Web 11/28/2007