10.1002/chem.202001450
Chemistry - A European Journal
FULL PAPER
Engl. 1996, 35, 1320; Angew. Chem. 1996, 108, 1418; b) G. J. Bodwell,
J. N. Bridson, T. J. Houghton, J. W. J. Kennedy, M. R. Mannion, Chem.
Eur. J. 1999, 5, 1823; c) G. J. Bodwell, J. J. Fleming, M. R. Mannion, D.
O. Miller, J. Org. Chem. 2000, 65, 5360; d) G. J. Bodwell, J. N. Bridson,
M. K. Cyrañski, J. W. J. Kennedy, T. M. Krygowski, M. R. Mannion, D.
O. Miller, J. Org. Chem. 2003, 68, 2089.
intramolecular [2+2+2] cycloaddition. See: S. Nishigaki, Y. Shibata, A.
Nakajima, H. Okajima, Y. Masumoto, T. Osawa, A. Muranaka, H.
Sugiyama, A. Horikawa, H. Uekusa, H. Koshino, M. Uchiyama, A.
Sakamoto, K. Tanaka, J. Am. Chem. Soc. 2019, 14955.
[16] The enantioselective synthesis of chiral cyclo-chrysenylenes by using a
stoichiometric amount of cholesteryl stearate was reported, although
the product ee values were low (11–17%). See: ref 12a.
[8]
For selected examples, see; Corannulenes: a) T. J. Seiders, K. K.
Baldridge, J. S. Siegel, J. Am. Chem. Soc. 1996, 118, 2754.
Dibenzoanthracenes: c) H. A. Staab, F. Diederich, Chem. Ber. 1983,
116, 3487; d) H.-B. Chen, J. Yin, Y. Wang, J. Pei, Org. Lett. 2008, 10,
3113. Dibenzochrysenes: e) H. Matsubara, K. Yano, K. Yamamoto,
Polycyclic Aromat. Compd. 2001, 19, 165.Helicenes: f) J. Tribout, R. H.
Martin, M. Doyle, H. Wynberg, Tetrahedron Lett. 1972, 13, 2839; g) J.
M. Fox, D. Lin, J. Org. Chem. 1998, 63, 2031; h) H. Meier, M.
Schwertel, D. Schollmeyer, Angew. Chem. Int. Ed. 1998, 37, 2110;
Angew. Chem. 1998, 110, 2224; i) G. J. Bodwell, T. Satou, Angew.
Chem. Int. Ed. 2002, 41, 4003; Angew. Chem. 2002, 114, 4175; j) W.
Nakanishi, T. Matsuno, J. Ichikawa, H. Isobe, Angew. Chem. Int. Ed.
2011, 50, 6048; Angew. Chem. 2011, 123, 6172; k) H. Meier, M.
Schwertel, H. Kolshorn, Helv. Chim. Acta 2013, 96, 2009.
Hexabenzocoronenes: l) M. D. Watson, F. Jäckel, N. Severin, J. P.
Rabe, K. Müllen, J. Am. Chem. Soc. 2004, 126, 1402; m) M.
Quernheim, F. E. Golling, W. Zhang, M. Wagner, H. J. Rader, T.
Nishiuchi, K. Mullen, Angew. Chem. Int. Ed. 2015, 54, 10341; Angew.
Chem. 2015, 127, 10482; n) D. Lu, H. Wu, Y. Dai, H. Shi, X. Shao, S.
Yang, J. Yang, P. Du, Chem. Commun. 2016, 52, 7164; o) D. Lu, G.
Zhuang, H. Wu, S. Wang, S. Yang, P. Du, Angew. Chem. Int. Ed. 2017,
56, 158; Angew. Chem. 2017, 129, 164. Penetacenes: p) R. Bula, M.
Fingerle, A. Ruff, B. Speiser, C. Maichle-Mössmer, H. F. Bettinger,
Angew. Chem. Int. Ed. 2013, 52, 11647; Angew. Chem. 2013, 125,
11861. Peropyrenes: q) T. Umemoto, T. Kawashima, Y. Sakata, S.
Misuml, Tetrahedron Lett. 1975, 463. Teropyrenes: r) B. L. Merner, L. N.
Dawe, G. J. Bodwell, Angew. Chem. Int. Ed. 2009, 48, 5487; Angew.
Chem. 2009, 121, 5595.
[17] For the asymmetric synthesis of chiral cyclophanes by dynamic kinetic
resolution of diastereomeric mixtures, see: a) N. Kanomata, Y. Ochiai,
Tetrahedron Lett. 2001, 42, 1045; b) T. Ueda, N. Kanomata, H.
Machida, Org. Lett. 2005, 7, 2365; c N. Kanomata, G. Mishima, J.
Onozato, Tetrahedron Lett. 2009, 50, 409.
[18] For the diastereoselective synthesis of chiral cyclophanes by using
chiral sulfoxides, see: a) K. Mori, K. Ohmori, K. Suzuki, Angew. Chem.
Int. Ed. Engl. 2009, 48, 5638; Angew. Chem. 2009, 121, 5748; b) K.
Ohmori, S. Jung, Y. Kitajima, Y. Ueda, K. Suzuki, Synlett 2016, 27,
1521; c) Y. Ueda, K. Suzuki, K. Ohmori, Org. Lett. 2020, DOI:
10.1021/acs.orglett.0c00354.
[19] For recent reviews on the transition-metal-catalyzed [2+2+2]
cycloaddition, see: a) G. Domínguez, J. Pérez-Castells, Chem. Eur. J.
2016, 22, 6720; b) M. Amatore, C. Aubert, Eur. J. Org. Chem. 2015,
2015, 265; c) G. Domínguez, J. Pérez-Castells, [2+2+2] Cycloaddition,
in Comprehensive Organic Synthesis II, Vol. 5, 2nd ed. (Ed.: P.
Knochel), Elsevier, Amsterdam, 2014, p. 1537; d) K. Tanaka,
Transition-Metal-Mediated Aromatic Ring Construction (Ed.: K. Tanaka),
Wiley, Hoboken, USA, 2013; e) S. Okamoto, Y. Sugiyama, Synlett 2013,
24, 1044; f) E. Ruijter, D. Broere, Synthesis 2012, 44, 2639; g) M. R.
Shaaban, R. El-Sayed, A. H. M. Elwahy, Tetrahedron 2011, 67, 6095;
h) N. Weding, M. Hapke, Chem. Soc. Rev. 2011, 40, 4525; i) S. Li, L.
Zhou, K.-I. Kanno, T. Takahashi, J. Heterocycl. Chem. 2011, 48, 517.
[20] For recent reviews on the rhodium-catalyzed [2+2+2] cycloaddition,
see: a) Y. Shibata, K. Tanaka, Rhodium(I)-Catalyzed [2+2+2] and [4+2]
Cycloadditions, in Rhodium Catalysis in Organic Synthesis: Methods
and Reactions (Ed.: K. Tanaka), Wiley-VCH, Weinheim, 2019, pp. 183–
228; b) K. Tanaka, TCI Mail 2018, 179, 3; c) K. Tanaka, Y. Kimura, K.
Murayama, Bull. Chem. Soc. Jpn. 2015, 88, 375; d) K. Tanaka, Y.
Shibata, Synthesis 2012, 44, 323; e) K. Tanaka, Heterocycles 2012, 85,
1017; f) K. Tanaka, Chem. Asian. J. 2009, 4, 508; g) K. Tanaka, Synlett
2007, 2007, 1977.
[9]
The synthesis of achiral carbon nanobelts has been reported. See: a) G.
Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, K. Itami, Science 2017,
356, 172; b) G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, K. Itami, J.
Am. Chem. Soc. 2018, 140, 10054.
[10] For a review on PAH-based cyclophanes, see: P. G. Ghasemabadi, T.
Yao, G. J. Bodwell, Chem. Soc. Rev. 2015, 44, 6494.
[21] For a review on the enantioselective synthesis of chiral cyclophanes by
the rhodium-catalyzed [2+2+2] cycloaddition, see: K. Tanaka, Bull.
Chem. Soc. Jpn. 2018, 91, 187.
[11] a) Y. Yang, M. R. Mannion, L. N. Dawe, C. M. Kraml, R. A. Pascal, Jr.,
G. J. Bodwell, J. Org. Chem. 2012, 77, 57; b) P. R. Nandaluru, P.
Dongare, C. M. Kraml, R. A. Pascal, Jr., L. N. Dawe, D. W. Thompson,
G. J. Bodwell, Chem. Commun. 2012, 48, 7747; c) M. Hermann, D.
Wassy, D. Kratzert, B. Esser, Chem. Eur. J. 2018, 24, 7374.
[22] For examples on the enantioselective synthesis of chiral cyclophanes
by the rhodium-catalyzed [2+2+2] cycloaddition, see: a) K. Tanaka, H.
Sagae, K. Toyoda, K. Noguchi, M. Hirano, J. Am. Chem. Soc. 2007,
129, 1522; b) K. Tanaka, H. Sagae, K. Toyoda, M. Hirano, Tetrahedron
2008, 64, 831; c) T. Shibata, T. Uchiyama, K. Endo, Org. Lett. 2009, 11,
3906; d) T. Shibata, T. Chiba, H. Hirashima, Y. Ueno, K. Endo,
Heteroat. Chem 2011, 22, 363; e) T. Shibata, T. Uchiyama, H.
Hirashima, K. Endo, Pure Appl. Chem. 2011, 83, 597; f) K. Tanaka, T.
Araki, D. Hojo, K. Noguchi, Synlett 2011, 2011, 539; g) T. Shibata, M.
Miyoshi, T. Uchiyama, K. Endo, N. Miura, K. Monde, Tetrahedron 2012,
68, 2679; h) T. Araki, K. Noguchi, K. Tanaka, Angew. Chem. Int. Ed.
2013, 52, 5617; Angew. Chem. 2013, 125, 5727; i) Y. Tahara, S.
Obinata, K. S. Kanyiva, T. Shibata, A. Mándi, T. Taniguchi, K. Monde,
Eur. J. Org. Chem. 2016, 2016, 1405; j) T. Shibata, S. Obinata, K. S.
Kanyiva, Heterocycles 2017, 95, 1121.
[12] The synthesis of PAH-based chiral carbon nanohoops has been
reported. See: a) S. Hitosugi, W. Nakanishi, T. Yamasaki, H. Isobe, Nat.
Commun. 2011, 2, 1; b) S. Hitosugi, T. Yamasaki, H. Isobe, J. Am.
Chem. Soc. 2012, 134, 12442; c) T. Matsuno, S. Kamata, S. Hitosugi,
H. Isobe, Chem. Sci. 2013, 4, 3179; d) Y. Li, A. Yagi, K. Itami, J. Am.
Chem. Soc. 2020, 142, 3246.
[13] The synthesis of a chiral carbon nanobelt has been reported. See: K. Y.
Cheung, S. Gui, C. Deng, H. Liang, Z. Xia, Z. Liu, L. Chi, Q. Miao,
Chem 2019, 5, 838.
[14] a) P. Osswald, D. Leusser, D. Stalke, F. Würthner, Angew. Chem. Int.
Ed. 2004, 44, 250; Angew. Chem. 2004, 117, 254; b) P. Osswald, M.
Reichert, G. Bringmann, F. Würthner, J. Org. Chem. 2007, 72, 3403; c)
M. M. Safont-Sempere, P. Osswald, K. Radacki, F. Würthner, Chem.
Eur. J. 2010, 16, 7380; d) M. M. Safont-Sempere, P. Osswald, M. Stolte,
M. Grüne, M. Renz, M. Kaupp, K. Radacki, H. Braunschweig, F.
Würthner, J. Am. Chem. Soc. 2011, 133, 9580; e) A. Bedi, L. J. W.
Shimon, O. Gidron, J. Am. Chem. Soc. 2018, 140, 8086; f) A. Bedi, R.
Carmieli, O. Gidron, Chem. Commun. 2019, 55, 6022; g) A. Bedi, O.
Gidron, Chem. Eur. J. 2019, 25, 3279.
[23] Y. Aida, H. Sugiyama, H. Uekusa, Y. Shibata, K. Tanaka, Org. Lett.
2016, 18, 2672.
[24] a) T. Shibata, A. Kawachi, M. Ogawa, Y. Kuwata, K. Tsuchikama, K.
Endo, Tetrahedron 2007, 63, 12853; b) Y. Aida, Y. Shibata, K. Tanaka,
J. Org. Chem. 2018, 83, 2617.
[25] Only one product (63% yield, 70% ee) was reported in ref 23. For the
nickel-catalyzed enantioselective [2+2+2] cycloaddition of two
unsymmetric monoynes with unsymmetric cyclic alkenes, see: S. Ikeda,
H. Kondo, T. Arii, K. Odashima, Chem. Commun. 2002, 2422.
[15] Recently, our research group reported the enantioselective synthesis of
chiral twisted Möbius-cycloparaphenylenes by the rhodium-catalyzed
This article is protected by copyright. All rights reserved.