Tsubaki et al.
SCHEME 1. Mechanism of Color Development of
Phenolphthalein in the Aqueous Alkaline Region7
subunits (S,S)-24-28 were prepared from (S)-ethyl lac-
tate or (S)-mandelic acid.9 Ring-closing reactions were
carried out on 2910 with chiral tetraethylene glycol
subunits (S,S)-24-28 under sodium hydride and potas-
sium tetrafluoroborate to give the corresponding crown
ethers (S,S)-30-34 in moderate yields. Crown ethers
30-34 were treated with t-BuLi and allowed to react with
phthalic anhydride at -78 °C to afford (S,S,S,S)-35-39
in moderate to good yields (40-92%). Finally, reductive
deprotection of the allyl groups proceeded smoothly using
either 10% palladium on carbon and p-toluenesulfonic
acid in ethanol-water11 or sodium borohydride and a
catalytic amount of tetrakis(triphenylphosphine)pal-
ladium in methanol12 to afford (S,S,S,S)-2-5 and 7 in
excellent yields (91-100%).
Synthesis of the Chiral Host (S,S,S,S)-6. The
synthetic pathway for the chiral host (S,S,S,S)-6 is shown
in Scheme 3. The key intermediate (S,S)-42 was con-
structed on the basis of the known procedure.9c,13 Thus,
(S)-40 derived from (S)-(+)-mandelic acid as a diastereo
mixture was condensed with benzyl chloride 2910 in the
presence of sodium hydride in DMF, and this was
followed by deprotection of the THP groups under acidic
conditions to afford (S,S)-41 in 82% overall yield in two
steps. Treatment of (S,S)-41 with diethylene glycol di-
tosylate under sodium hydride and potassium tetrafluoro-
borate gave the corresponding crown ether (S,S)-42 in
49% yield, which was converted into the host (S,S,S,S)-6
via a route similar to those for the chiral hosts (S,S,S,S)-
2-5 and 7 in 95% overall yield in two steps.
Visual Enantiomeric Recognition by Chiral Hosts
(S,S,S,S)-2-5. A preceding paper proposed that a colored
complex between host 1 and triamine 8 developed
because both terminal amino groups of triamine 8
bridged the two phenolic crown rings of host 1 and the
inner amino group was captured as a countercation of
the carboxylate, based on ring opening of the γ-lactone
of host 1.6b Thus, a definite chain length is required for
the visualization of R,ω-diamines or linear triamines
using the achiral host 1. Derivatization of chiral guests
is indispensable for meeting the above requirement.
Therefore, two types of amino acid derivatives 9 and 10-
14 were prepared.14 Before investigating the possibility
of enantiomeric recognition between chiral hosts 2-5 and
chiral amines 9-14, we examined the interaction be-
tween chiral hosts and achiral triamine 8. When triamine
8 was added to a solution of host in methanol at 25 °C,
region, as revealed by Tamura et al.,7 is as follows:
(i) monoanion of phenolphthalein is colorless, (ii) two
types of dianion (colored carboxylate form and colorless
lactone form)8 are present, and (iii) in the strong alkaline
region, Michael addition of hydroxide takes place to give
the corresponding colorless trianion (Scheme 1). In the
present paper, we report the visual enantiomeric recogni-
tion of amino acid derivatives using chiral hosts 2-7 in
methanol media as well as changes in this phenomenon
with a change in the temperature (Figure 1).
Results and Discussion
Syntheses of Chiral Host Molecules (S,S,S,S)-2-5
and 7. The chiral hosts 2-5 and 7, containing two methyl
or phenyl groups in each crown ether, were synthesized
according to Scheme 2. Key chiral tetraethylene glycol
(4) (a) Kaneda, T.; Hirose, K.; Misumi, S. J. Am. Chem. Soc. 1989,
111, 742-743. (b) Vo¨gtle, F.; Knops, P. Angew. Chem., Int. Ed. Engl.
1991, 30, 958-960. (c) Naemura, K.; Tobe, Y.; Kaneda, T. Coord. Chem.
Rev. 1996, 148, 199-219. (d) Kubo, Y.; Maeda, S.; Tokita, S.; Kubo,
M. Nature 1996, 382, 522-524. (e) Zhang, X. X.; Bradshaw, J. S.; Izatt,
R. M. Chem. Rev. 1997, 97, 3313-3361. (f) Kim, S.-G.; Kim, K.-H.;
Jung, J.; Shin, S. K.; Ahn, K. H. J. Am. Chem. Soc. 2002, 124, 591-
596. (g) Tsukube, H.; Shinoda, S. Chem. Rev. 2002, 102, 2389-2404.
(h) Heinrichs, G.; Vial, L.; Lacour, J.; Kubik, S. Chem. Commun. 2003,
1252-1253. (i) Zhu, L.; Anslyn, E. V. J. Am. Chem. Soc. 2004, 126,
3676-3677. (j) Pu, L. Chem. Rev. 2004, 104, 1687-1716. (k) Escuder,
B.; Rowan, A. E.; Feiters, M. C.; Nolte, R. J. M. Tetrahedron 2004, 60,
291-300. (l) Shinoda, S.; Okazaki, T.; Player, T. N.; Misaki, H.; Hori,
K.; Tsukube, H. J. Org. Chem. 2005, 70, 1835-1843.
(9) For (S,S)-25: (a) Dyer, R. B.; Metcalf, D. H.; Ghirardelli, R. G.;
Palmer, R. A.; Holt, E. M. J. Am. Chem. Soc. 1986, 108, 3621-3629.
For (S,S)-27: (b) Cooper, K. D.; Walborsky, H. M. J. Org. Chem. 1981,
46, 2110-2116. For (S,S)-28: (c) Hirose, K.; Fujiwara, A.; Matsunaga,
K.; Aoki, N.; Tobe, Y. Tetrahedron: Asymmetry 2003, 14, 555-566.
(d) Hirose, K.; Ogasahara, K.; Nishioka, K.; Tobe, Y.; Naemura, K. J.
Chem. Soc., Perkin Trans. 2 2000, 1984-1993. For (S,S)-24 and (S,S)-
26, see the Supporting Information.
(10) Tsubaki, K.; Otsubo, T.; Morimoto, T.; Maruoka, H.; Furukawa,
M.; Momose, Y.; Shang, M.; Fuji, K. J. Org. Chem. 2002, 67, 8151-
8156.
(11) Boss, R.; Scheffold, R. Angew. Chem., Int. Ed. Engl. 1976, 15,
558-559.
(5) (a) Molt, O.; Ru¨beling, D.; Scha¨fer, G.; Schrader, T. Chem. Eur.
J. 2004, 10, 4225-4232. (b) Rekharsky, M.; Inoue, Y.; Tobey, S.;
Metzger, A.; Anslyn, E. J. Am. Chem. Soc. 2002, 124, 14959-14967.
(6) (a) Fuji, K.; Tsubaki, K.; Tanaka, K.; Hayashi, N.; Otsubo, T.;
Kinoshita, T. J. Am. Chem. Soc. 1999, 121, 3807-3808. (b) Tsubaki,
K.; Hayashi, N.; Nuruzzaman, M.; Kusumoto, T.; Fuji, K. Org. Lett.
2001, 3, 4067-4069. (c) Tsubaki, K.; Kusumoto, T.; Hayashi, N.;
Nuruzzaman, M.; Fuji, K. Org. Lett. 2002, 4, 2313-2316.
(12) (a) Beugelmans, R.; Bourdet, S.; Bigot, A.; Zhu, J. Tetrahedron
Lett. 1994, 35, 4349-4350. (b) Bois-Choussy, M.; Neuville, L.; Beugel-
mans, R.; Zhu, J. J. Org. Chem. 1996, 61, 9309-9322.
(13) (a) Huszthy, P.; Bradshaw, J. S.; Zhu, C. Y.; Izatt, R. M.; Lifson,
S. J. Org. Chem. 1991, 56, 3330-3336. (b) Naemura, K.; Nishikawa,
Y.; Fuji, J.; Hirose, K.; Tobe, Y. Tetrahedron: Asymmetry 1997, 8, 873-
882.
(7) Tamura, Z.; Abe, S.; Ito, K.; Maeda, M. Anal. Sci. 1996, 12, 927-
930.
(8) Taguchi, K. J. Am. Chem. Soc. 1986, 108, 2705-2709.
(14) For the synthesis of guests, see the Supporting Information.
4610 J. Org. Chem., Vol. 70, No. 12, 2005