3192
Y. Shimasaki et al.
SHORT PAPER
In summary, the short, efficient, and facile synthesis of
gizzerosine (S)-1, a potent inducer of gizzard erosion, was
achieved using successive zinc-mediated and palladium-
catalyzed coupling reactions as the key steps. The pipero-
nyl moiety was used as a novel N-protecting group.
NHZ
NHZ
AcO
not SN2
BnO
ZnI
BnO
O
O
4
8
AcO
a)
Br
7
SN2′
NMR spectra were conducted at 300 MHz (1H NMR) and 150 MHz
1
(13C NMR) with acetone as the reference (2.22 ppm, H NMR;
215.94 ppm, 13C NMR).
NHZ OAc
N
(+)-1·2HCl (9)
Amorphous solid; mp 250–251 °C (dec.) [Lit.4 251–252 °C (dec.)];
BnO
H
N
N
H
[a]D22 +9.45 (c 0.555, H2O) {Lit. [a]D22 +10.3 (c 1.28, H2O)}.
O
9
R
IR (ATR, Zn–Se): 3300–2300 (br s), 3116 (s), 2786 (s), 2450 (m),
1634 (s), 1601 (s), 1522 (s), 1462 (s), 1395 (s), 1348 (m), 1329 (m),
1235 (w), 1052 (w), 957 (w), 839 (w), 794 (w), 719 (w), 623 (m)
cm–1.
1H NMR (D2O): d = 1.35–1.60 (2 H, m), 1.74 (2 H, quint, J = 7.5
Hz), 1.89 (2 H, m, pseudo q, J = 7.4 Hz), 3.11 (4 H, pseudo t, J = 6.6
Hz), 3.37 (2 H, pseudo t, J = 7.2 Hz), 3.75 (1 H, t, J = 6.0 Hz,
CHC=O), 7.26 (1 H, br s), 8.30 (1 H, br s).
10a–d
b)
N
NHZ
BnO
N
H
N
R
O
11a: R = Bn
(50%)
(92%)
3,4-(OMe)2Bn (trace)
PMB
11b:
11c:
11d:
13C NMR (D2O): d = 22.04, 22.91, 25.65, 30.38, 46.86, 47.72,
54.99, 116.93, 131.45, 135.69, 175.08 (C=O).
c)
piperonyl
(71%)
HRMS-FAB: m/z calcd for C11H21N4O2 [M + H] +: 241.1665;
found: 241.1671.
N
NH2
HO
N
H
N
R
(S)-1
Acknowledgment
O
We thank Prof. Takeshi Sugai (Keio Univ., Japan) for useful advice
and Prof. Hidenori Watanabe (Tokyo Univ., Japan) for kindly
giving us the authentic sample. Financial support by grant-in-aid
from the Japan Society for the Promotion of Science (No.
17580092) is gratefully acknowledged.
Scheme 2 Synthesis of 1 by a palladium-catalyzed coupling reac-
tion. a) 7 (1.2 equiv), CuCN (1.0 equiv), LiCl (2.0 equiv), DMF, 2 h
(98%); b) 2¢-N-(p-R-C6H4CH2)histamine (1.2 equiv), Pd2(dba)3 (0.05
equiv), PPh3 (0.05 equiv), THF, 50 °C, 2 h; c) H2, Pd(OH)2/C, H2O–
THF–EtOH (1:1:3) (47% for 10d).
References
Table 1 Preparation of 2¢N-Protected Histamines
(1) Johnson, D. C.; Pinedo, C. Avian Dis. 1971, 15, 835.
(2) Okazaki, T.; Noguchi, T.; Igarashi, K.; Sakagami, Y.; Seto,
H.; Mori, K.; Naito, H.; Masumura, T.; Sugahara, M. Agric.
Biol. Chem. 1983, 47, 2949.
(3) Mori, K.; Okazaki, T.; Noguchi, T.; Naito, H. Agric. Biol.
Chem. 1983, 47, 2131.
N
N
a)
N
H
N
H
Ar
H2N
N
H
histamine
10a–d
(4) Mori, K.; Sugai, T.; Maeda, Y.; Okazaki, T.; Noguchi, T.;
Naito, H. Tetrahedron 1985, 41, 5307.
(5) (a) Dexter, C. S.; Jackson, R. F. W. J. Org. Chem. 1999, 64,
7579. (b) Dunn, M. J.; Jackson, R. F. W.; Pietruszka, J.;
Turner, D. J. Org. Chem. 1995, 60, 2210.
(6) Xue, C.-B.; Voss, M. E.; Nelson, D. J.; Duan, J. J.-W.;
Cherney, R. J.; Jacobson, I. C.; He, X.; Roderick, J.; Chen,
L.; Corbett, R. L.; Wang, L.; Meyer, D. T.; Kennedy, K.;
DeGrado, W. F.; Hardman, K. D.; Teleha, C. A.; Jaffee, B.
D.; Liu, R.-Q.; Copeland, R. A.; Covington, M. B.; Christ,
D. D.; Trzaskos, J. M.; Newton, R. C.; Magolda, R. L.;
Wexler, R. R.; Decicco, C. P. J. Med. Chem. 2001, 44, 2636.
(7) Lombard, M.; Girotti, R.; Morganti, S.; Trombini, C. Org.
Lett. 2001, 3, 2981.
Entry ArCHO
Products
10a
Yields (%)
1
2
3
4
Benzaldehyde
Anisaldehyde
94
93
10
89
10b
3,4-Dimethoxybenzaldehyde
Piperonal
10c
10d
a Conditions: ArCHO (2.5 equiv), NaBH4 (2.0 equiv), MS 3Å,
MeOH.
ing group. This low yield was due to the instability of 1 in
the presence of palladium catalysts. The overall yield
from 3 was 33% in three steps (29% from L-serine in sev-
en steps). The spectroscopic data of 1 coincided with
those reported.3,4
(8) N-Benzylhistamine: Beke, G.; Szabó, L. F.; Podány, B. J.
Nat. Prod. 2002, 65, 649.
Synthesis 2005, No. 19, 3191–3192 © Thieme Stuttgart · New York