Vekemans and E. W. Meijer, Chem.–Eur. J., 1998, 4, 1235–1243;
(c) C. G. Bangcuyo, U. Evans, M. L. Myrick and U. H. F. Bunz,
Macromolecules, 2001, 34, 7592–7594; (d) Y.-H. Niu, J. Huang and
Y. Cao, Adv. Mater., 2003, 15, 807–811.
References
1 G. S. He, J. D. Bhawalkar, C. F. Zhao and P. N. Prasad, Appl.
Phys. Lett., 1995, 67, 2433–2435.
18 (a) X. Zhang, H. Gorohmaru, M. Kadowaki, T. Kobayashi,
T. Ishi-i, T. Thiemann and S. Mataka, J. Mater. Chem., 2004, 14,
1901–1904; (b) X. Zhang, R. Yamaguchi, K. Moriyama,
M. Kadowaki, T. Kobayashi, T. Ishi-i, T. Thiemann and
S. Mataka, J. Mater. Chem., 2005, 15, 736–740.
2 B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer,
J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler,
I.-Y. S. Lee, D. M. McCord-Maughon, J. Qin, H. Ro¨ckel,
M. Rumi, X.-L. Wu, S. R. Marder and J. W. Perry, Nature,
1999, 398, 51–54.
3 D. A. Parthenopoulos and P. M. Rentzepis, Science, 1989, 245,
843–845.
4 W. Denk, J. H. Strickler and W. W. Webb, Science, 1990, 248,
73–76.
19 (a) S. D. A. Sandanayaka, K. Matsukawa, T. Ishi-i, S. Mataka,
Y. Araki and O. Ito, J. Phys. Chem. B, 2004, 108, 19995–20004; (b)
S. D. A. Sandanayaka, Y. Araki, Y. Taguri, T. Ishi-i, S. Mataka
and O. Ito, J. Phys. Chem. B, 2005, 109, 22502–22512.
20 (a) S. Kato, T. Matsumoto, T. Ishi-i, T. Thiemann, M. Shigeiwa,
H. Gorohmaru, S. Maeda, Y. Yamashita and S. Mataka, Chem.
Commun., 2004, 2342–2343; (b) S. Kato, T. Matsumoto,
M. Shigeiwa, H. Gorohmaru, S. Maeda, T. Ishi-i and S. Mataka,
Chem.–Eur. J., 2006, 12, 2303–2317.
21 T. Imada, H. Kijima, T. Takeuchi and S. Shinkai, Tetrahedron,
1996, 52, 2817–2826.
22 K. Pilgram, M. Zupan and R. Skiles, J. Heterocycl. Chem., 1970, 7,
629–633.
5 (a) C. W. Spangler, J. R. Starkey, F. Meng, A. Gong,
M. Drobizhev, A. Rebane and B. Moss, Proc. SPIE–Int. Soc.
Opt. Eng., 2005, 5689, 141–148; (b) F.-L. Mao, Q.-R. Xing,
K. Wang, L.-Y. Lang, Z. Wang, L. Chai and Q.-Y. Wang, Opt.
Commun., 2005, 256, 358–363; (c) K. Ogawa, H. Hasegawa,
Y. Inaba, Y. Kobuke, H. Inoue, Y. Kanemitsu, E. Kohno,
T. Hirano, S. Ogura and I. Okura, J. Med. Chem., 2006, 49,
2276–2283; (d) D. Gao, R. R. Agayan, H. Xu, M. A. Philbert and
R. Kopelman, Nano Lett., 2006, 6, 2383–2386; (e) J. W. Snyder,
E. Skovsen, J. D. C. Lambert, L. Poulsen and P. R. Ogilby, Phys.
Chem. Chem. Phys., 2006, 8, 4280–4293.
6 P. K. Frederiksen, M. Jørgensen and P. M. Ogilby, J. Am. Chem.
Soc., 2001, 123, 1215–1221.
7 P. K. Frederiksen, S. P. Mcllroy, C. B. Nielsen, L. Nikolajsen,
E. Skovsen, M. Jørgensen, K. V. Mikkelsen and P. R. Ogilby,
J. Am. Chem. Soc., 2005, 127, 255–269.
8 (a) C. B. Nielsen, M. Johnsen, J. Arnbjerg, M. Pittelkow,
S. P. McIlroy, P. R. Ogilby and M. Jørgensen, J. Org. Chem.,
2005, 70, 7065–7079; (b) J. Arnbjerg, M. Johnsen, P. K. Frederiksen,
S. E. Braslavsky and P. R. Ogilby, J. Phys. Chem. A, 2006, 110,
7375–7385.
9 S. P. McIlroy, E. Clo, L. Nikolajsen, P. K. Frenderiksen,
C. B. Nielen, K. V. Mikkelsen, K. V. Gothelf and P. R. Ogilby,
J. Org. Chem., 2005, 70, 1134–1146.
10 (a) A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel and
C. W. Spangler, IEEE J. Sel. Top. Quantum Electron., 2001, 7,
971–975; (b) M. Drobizhev, A. Karotki, M. Kruk, Y. Dzenis,
A. Rebane, F. Meng, E. Nickel and C. W. Spangler, Proc. SPIE–
Int. Soc. Opt. Eng., 2003, 5211, 63–74.
11 M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane,
P. N. Taylor and H. L. Anderson, J. Am. Chem. Soc., 2004, 126,
15352–15353.
23 B. Li, J. Li, Y. Fu and Z. Bo, J. Am. Chem. Soc., 2004, 126,
3430–3431.
24 In toluene, 1c shows a concentration-dependent change in the
UV/Vis linear absorption spectra, suggesting an aggregation of 1c
(ESI{). In contrast, in chloroform the UV/Vis linear absorption
spectra did not change with changing concentration.
25 Z. O. Liu, Q. Fang, D.-X. Cao, D. Wang and G.-B. Xu, Org. Lett.,
2004, 6, 2933–2936.
26 At 800 nm 1b did not show a maximum of the two-photon
absorption cross-section. However, the linear transmittance
component (T0), explained in the Measurement section, at 800 nm
is very close to 1. So the measured cross-section value should be
ascribed to the two-photon absorption rather than other nonlinear
processes such as excited state absorption.
27 K. Kamada, K. Ohta, Y. Iwase and K. Kondo, Chem. Phys. Lett.,
2003, 372, 386–393.
28 B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard,
J. C. Bhatt, R. Kannan, L. Yuan, G. S. He and G. S. Prasad,
Chem. Mater., 1998, 10, 1863–1874.
29 A slightly high s value (15 GM, 780 nm) in TPP was determined by
a
two-photon-induced fluorescence method: M. Drobizhev,
A. Karotki, M. Kruk and A. Rebane, Chem. Phys. Lett., 2002,
355, 175–182. In the present work, we used a Z-scan method to
determine the s value (2.2 GM, 800 nm). It is well known that the s
values are highly dependent on the experimental setup, the
monitoring wavelength, the intensity level, and the pulse duration:
e.g., N. N. P. Moonen, W. C. Pomeranz, R. Gist, C. Boudon,
J.-P. Gisselbrecht, T. Kawai, A. Kishioka, M. Gross, M. Irie and
F. Diederich, Chem.–Eur. J., 2005, 11, 3325–3341.
12 M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane,
P. N. Taylor and H. L. Anderson, J. Phys. Chem. B, 2005, 109,
7223–7236.
13 W. R. Dichtel, J. M. Serin, C. Edder, J. M. J. Fre´chet,
M. Matuszewski, L.-S. Tan, T. Y. Ohulchanskyy and
P. N. Prasad, J. Am. Chem. Soc., 2004, 126, 5380–5381.
14 M. A. Oar, J. M. Serin, W. R. Dichtel, J. M. J. Fre´chet,
T. Y. Ohulchanskyy and P. N. Prasad, Chem. Mater., 2005, 17,
2267–2275.
30 (a) S.-J. Chung, K.-S. Kim, T.-C. Lin, G. S. He, J. Swiatkiewicz
and P. N. Prasad, J. Phys. Chem. B, 1999, 103, 10741–10745; (b)
A. Abbotto, L. Beverina, R. Bozio, A. Facchetti, C. Ferrante,
G. A. Pagani, D. Pedron and R. Signorini, Chem. Commun., 2003,
2144–2145; (c) Y. Wang, G. S. He, P. N. Prasad and T. Goodson
III, J. Am. Chem. Soc., 2005, 127, 10128–10129.
31 R. P. Brin˜as, T. Troxler, R. M. Hochstrasser and S. A. Vinogradov,
J. Am. Chem. Soc., 2005, 127, 11851–11862.
32 V. A. Ganzha, G. P. Gurinovich, B. M. Dzhagarov, G. D. Egorova,
E. I. Sagun and A. M. Shul’ga, J. Appl. Spectroscoc., 1989, 50,
402–406.
15 M. Morone, L. Beverina, A. Abbotto, F. Silvestri, E. Collini,
C. Ferrante, R. Bozio and G. A. Pagani, Org. Lett., 2006, 8,
2719–2722.
16 (a) J.-M. Raimundo, P. Blanchard, H. Brisset, S. Akoudad and
J. Roncali, Chem. Commun., 2000, 939–940; (b)
M. Akhtaruzzaman, M. Tomura, M. B. Zaman, J. Nishida and
Y. Yamashita, J. Org. Chem., 2002, 67, 7813–7818; (c)
M. J. Edelmann, J.-M. Raimundo, N. F. Utesch, F. Diederich,
C. Boudon, J.-P. Gisselbrecht and H. Gross, Helv. Chim. Acta,
2002, 85, 2195–2213; (d) K. R. J. Thomas, M. Lin, J. T. Velusamy,
Y.-T. Tao and C.-H. Chuen, Adv. Funct. Mater., 2004, 14, 83–90;
(e) M. Velusamy, K. R. Justin Thomas, J. T. Lin, Y.-C. Hsu and
L.-C. Ho, Org. Lett., 2005, 7, 1899–1902.
33 It was reported that the WD value of ZnTPP decreased from 0.92–
0.93 in toluene to 0.50 in halogenated solvent: F. Wilkinson,
W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1993, 22,
113–262.
17 (a) C. Kitamura, S. Tanaka and Y. Yamashita, Chem. Mater.,
1996, 8, 570–578; (b) H. A. M. van Mullekom, J. A. J. M.
34 A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry,
CRC Press, Boca Raton, FL, 1991.
3346 | J. Mater. Chem., 2007, 17, 3341–3346
This journal is ß The Royal Society of Chemistry 2007