10.1002/ejoc.202000178
European Journal of Organic Chemistry
Full Paper
Grozavu, H. B. Hepburn, P. J. Smith, H. K. Potukuchi, P. J. Lindsay-Scott,
T. J. Donohoe, Nat. Chem. 2019, 11, 242-247.
(3×20 mL). The collected organic layer was concentrated under
vacuum. Purification by chromatography on alumina (CH2Cl2) to
afford 8a as pale yellow liquid (120 mg, 64%). IR (neat): 1657 (υ
C=O), 1590, 1559, 1511, 1305 (υ C-N), 874, 815, 776 cm-1. 1H NMR
(400 MHz, CDCl3): δ 7.54-7.41 (m, 5H), 7.40 (d, J = 8.4 Hz, 2H),
7.34 (s, 1H), 7.20 (d, J = 8.4 Hz, 2H), 7.14 (dd, J = 8.4, 1.6 Hz,
1H), 6.73 (s, 1H), 6.67 (d, J = 8.8 Hz, 1H), 2.47 (s, 3H), 2.29 (s,
3H). 13C NMR (100 MHz, CDCl3): δ 161.5 (CO), 151.1 (C), 139.3
(C), 138.4 (C), 136.9 (C), 134.8 (C), 131.3 (C), 131.1 (CH), 130.6
(2CH), 128.5 (2CH), 128.4 (CH), 128.3 (2CH), 128.2 (2CH), 126.6
(CH), 121.4 (CH), 119.7 (C), 116.1 (CH), 21.3 (CH3), 20.7 (CH3).
HRMS (FAB, [M]+) for C23H19NO calcd 325.1467; found 325.1466.
[4] a) U. C. Yoon, S. L. Quillen, P. S. Mariano, R. Swanson, J. L. Stavinoha, E.
Bay, J. Am. Chem. Soc. 1983, 105, 1204-1218; b) H. Kitaguchi, K. Ohkubo,
S. Ogo, S. Fukuzumi, J. Phys. Chem. A 2006, 110, 1718-1725; c) H. Kotani,
K. Ohkubo, S. Fukuzumi, Faraday Discuss. 2012, 155, 89-102.
[5] For selected examples of benzene C-H functionalizations, see: a) V. S.
Kumar, D. L. Aubele, P. E. Floreancig, Org. Lett. 2001, 3, 4123-4125; b) K.
Ohkubo, T. Kobayashi, S. Fukuzumi, Angew. Chem. Int. Ed. 2011, 50,
8652-8655; c) K. Ohkubo, T. Kobayashi, S. Fukuzumi, Opt. Express 2012,
20, A360-A365; d) K. Ohkubo, A. Fujimoto, S. Fukuzumi, J. Phys. Chem. A
2013, 117, 10719-10725; For selected examples of cyclization reactions,
see: e) V. S. Kumar, P. E. Floreancig, J. Am. Chem. Soc. 2001, 123, 3842-
3843; f) D. L. Aubele, P. E. Floreancig, Org. Lett. 2002, 4, 3443-3446.
[6] a) T. Umemoto, Y. Gotoh, Bull. Chem. Soc. Jpn. 1991, 64, 2008-2010; b)
R. Krieg, A. Eitner, W. Günther, K. J. Halbhuber, Biotech. Histochem. 2007,
82, 235-262; c) A. A. Fadda, R. E.-D. El-Mekawy, M. T. AbdelAal,
Phosphorus, Sulfur, Silicon Relat. Elem. 2016, 191, 1148-1154; d) J. R.
Brandt, L. Pospíšil, L. Bednárová, R. C. da Costa, A. J. P. White, T. Mori,
F. Teplý, M. J. Fuchter, Chem. Commun. 2017, 53, 9059-9062.
[7] Contributions of Pilyugin's work were listed in the reviews, see: G. T.
Pilyugin, B. M. Gutsulyak, Russ. Chem. Rev. 1963, 32, 167-188. and
references 13-17 therein cited.
Computational detail:
The geometry optimizations zero-point vibrational energies
(ZPVEs) were calculated using the B3LYP/6-31G** level of theory
combined with the CPCM implicit solvation model to simulate
acetonitrile. Singlet point energy calculations with B3LYP/6-
311++G** were performed on the B3LYP/6-31G** optimized
structures to obtain more accurate electronic energies. The
energy discussed throughout the manuscript is enthalpy
calculated as H = ESCF + ZPVE + Hvib + 4RT. All the calculations
were performed by using Gaussian 09.
[8] a) M. V. Mel'nik, A. V. Turov, Z. L. Novitskii, A. O. Stetskiv, O. V.
Bodnarchuk, N. I. Ganushchak, Russ. J. Gen. Chem. 2006, 76, 634-637; b)
N. E. Shchepina, I. I. Boiko, G. A. Aleksandrova, Pharm. Chem. J. 2011, 45,
159-161.
[9] a) G. A. Ramann, B. J. Cowen, Molecules 2016, 21, 986; b) R. Sharma, P.
Kour, A. Kumar, J. Chem. Sci. 2018, 130, 73.
[10] For applications of A3 reactions, see: a) V. A. Peshkov, O. P. Pereshivko,
E. V. Van der Eycken, Chem. Soc. Rev. 2012, 41, 3790-3807; b) I. Jesin,
G. C. Nandi, Eur. J. Org. Chem. 2019, 2704-2720. For selected examples
of A3 reactions in synthesis of quinolines, see references 11-12.
[11] Generally, the reaction proposed through the formation of acetylide
activated by lewis acid or transition metal, for selected examples, see: a) H.
Z. S. Huma, R. Halder, S. S. Kalra, J. Das, J. Iqbal, Tetrahedron Lett. 2002,
43, 6485-6488; b) K. Cao, F. Zhang, Y. Tu, X. Zhuo, C. Fan, Chem. Eur. J.
2009, 15, 6332-6334; c) H. Huang, H. Jiang, K. Chen, H. Liu, J. Org. Chem.
2009, 74, 5476-5480; d) C. E. Meyet, C. H. Larsen, J. Org. Chem. 2014, 79,
9835-9841; e) K.-M. Jiang, J.-A. Kang, Y. Jin, J. Lin, Org. Chem. Front.
2018, 5, 434-441.
Acknowledgments
We thank the Ministry of Science and Technology of the Republic
of China for the financial support of this research under grant nos.
MOST 105-2633-M-007-003 and 107-2113-M-006-008-MY2.
[12] For selected examples of Povarov reaction with alkynes as dienophiles,
see: a) X. Li, Z. Mao, Y. Wang, W. Chen, X. Lin, Tetrahedron 2011, 67,
3858-3862; b) X. Zhang, X. Xu, L. Yu, Q. Zhao, Asian J. Org. Chem. 2014,
3, 281-284; c) C. Alonso, M. González, F. Palacios, G. Rubiales, J. Org.
Chem. 2017, 82, 6379-6387; d) V. Fasano, J. E. Radcliffe, M. J. Ingleson,
Organometallics 2017, 36, 1623-1629.
Conflict of interest
The authors declare no conflict of interest.
[13] A. R. Katritzky, D. Semenzin, B. Yang, D. P. Pleynet, J. Heterocycl. Chem.
Keywords: aza-Diels-Alder reaction • quinolinium salts •
distortion energy • energy decomposition analysis (EDA)
1998, 35, 467-470.
[14] a) J. Jayakumar, K. Parthasarathy, C.-H. Cheng, Angew. Chem. Int. Ed.
2012, 51, 197-200; b) K. Parthasarathy, N. Senthilkumar, J. Jayakumar, C.-
H. Cheng, Org. Lett. 2012, 14, 3478-3481; c) S. Prakash, K. Muralirajan,
C.-H. Cheng, Angew. Chem. Int. Ed. 2016, 55, 1844-1848; d) P.
Gandeepan, C.-H. Cheng, Chem. Asian J. 2016, 11, 448–460; e) J.
Jayakumar, C.-H. Cheng, J. Chin. Chem. Soc. 2018, 65, 11–23.
[15] J.-D. Yang, J. Xue, J.-P. Cheng, Chem. Soc. Rev. 2019, 48, 2913-2926.
[16] CCDC 1857344 (4aa), 1857342 (4da), 1857343 (4ea'), 1887315 (4ax),
1878890 (4ay), and 1903589 (I-Tol-BrPh) contain the supplementary
crystallographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre.
[17] a) S. Murata, K. Suzuki, A. Tamatani, M. Miura, M. Nomura, J. Chem. Soc.,
Perkin Trans. 1 1992, 1387-1392; b) E. Boess, D. Sureshkumar, A. Sud, C.
Wirtz, C. Farès, M. Klussmann, J. Am. Chem. Soc. 2011, 133, 8106-8109;
c) L. Huang, T. Niu, J. Wu, Y. Zhang, J. Org. Chem. 2011, 76, 1759-1766;
d) M. Nishino, K. Hirano, T. Satoh, M. Miura, J. Org. Chem. 2011, 76, 6447-
6451; e) G. Zhang, Y. Ma, S. Wang, Y. Zhang, R. Wang, J. Am. Chem. Soc.
2012, 134, 12334-12337; f) T. Wang, M. Schrempp, A. Berndhäuser, O.
Schiemann, D. Menche, Org. Lett. 2015, 17, 3982-3985.
[18] Examples of synthesis of 3,4-disubstituted quinolines with internal alkynes,
see: a) P. Zhao, X. Yan, H. Yin, C. Xi, Org. Lett. 2014, 16, 1120-1123; b)
C.-Z. Luo, P. Gandeepan, Y.-C. Wu, W.-C. Chen, C.-H. Cheng, RSC Adv.
2015, 5, 106012-106018; c) L.-H. Li, Z.-J. Niu, Y.-M. Liang, Chem. Eur. J.
2017, 23, 15300-15304; d) H. Wang, Q. Xu, S. Shen, S. Yu, J. Org. Chem.
2017, 82, 770-775.
[19] S. Ali, H.-T. Zhu, X.-F. Xia, K.-G. Ji, Y.-F. Yang, X.-R. Song, Y.-M. Liang,
Org. Lett. 2011, 13, 2598-2601.
[20] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) C. Lee, W. Yang,
R. G. Parr, Phys. Rev. B 1988, 37, 785-789; c) A. D. Becke, Phys. Rev. A
1988, 38, 3098-3100.
[1] For selected reciews of natural and bioactive compounds, see: a) W. Sliwa,
Curr. Org. Chem. 2003, 7, 995-1048; b) A. Schmidt, Adv. Heterocycl. Chem.
2003, 85, 67-171; c) L. Grycová., J. Dostál, R. Marek, Phytochemistry 2007,
68, 150-175; d) R. Gaziano, G. Moroni, C. Buè, M. T. Miele, P. Sinibaldi-
Vallebona, F. Pica, World J. Gastrointest. Oncol. 2016, 8, 30-39; For
examples of applications, see: e) J. Fortage, F. Tuyèras, P. Ochsenbein, F.
Puntoriero, F. Nastasi, S. Campagna, S. Griveau, F. Bedioui, I. Ciofini, P.
P. Lainé, Chem. Eur. J. 2010, 16, 11047-11063; f) D. Y. W. Ng, R. Vill, Y.
Wu, K. Koynov, Y. Tokura, W. Liu, S. Sihler, A. Kreyes, S. Ritz, H. Barth, U.
Ziener, T. Weil, Nat. Commun. 2017, 8, 1850; g) K. Xu, Y. Fu, Y. Zhou, F.
Hennersdorf, P. Machata, I. Vincon, J. J. Weigand, A. A. Popov, R. Berger,
X. Feng, Angew. Chem. Int. Ed. 2017, 56, 15876-15881.
[2] a) M. Wainwright, J. E. Kristiansen, Int. J. Antimicrob. Agents 2003, 22, 479-
486; b) S. D. Barchéchath, R. I. Tawatao, M. Corr, D. A. Carson, H. B.
Cottam, Bioorg. Med. Chem. Lett. 2005, 15, 1785-1788; c) R. Sánchez-
Martín, J. M. Campos, A. Conejo-García, O. Cruz-López, M. Báñez-Coronel,
A. Rodríguez-González, M. A. Gallo, J. C. Lacal, A. Espinosa, J. Med.
Chem. 2005, 48, 3354-3363; d) G. Bringmann, K. Thomale, S. Bischof, C.
Schneider, M. Schultheis, T. Schwarz, H. Moll, U. Schurigt, Antimicrob.
Agents Chemother. 2013, 57, 3003-3011; e) P. Singh, R. Kumar, A. K.
Singh, P. Yadav, R. S. Khanna, M. Vinayak, A. K. Tewari, J. Mol. Struct.
2018, 1163, 262-269.
[3] a) N. Baba, K. Nishiyama, J. Oda, Y. Inouye, Agric. Biol. Chem. 1976, 40,
1259-1260; b) F. Diaba, C. Le Houerou, M. Grignon-Dubois, P. Gerval, J.
Org. Chem. 2000, 65, 907-910; c) K. T. Sylvester, K. Wu, A. G. Doyle, J.
Am. Chem. Soc. 2012, 134, 16967-16970; d) Y. Wang, Y. Liu, D. Zhang, H.
Wei, M. Shi, F. Wang, Angew. Chem. Int. Ed. 2016, 55, 3776-3780; e) Y.
Jin, L. Ou, H. Yang, H. Fu, J. Am. Chem. Soc. 2017, 139, 14237-14243; f)
Z. Kang, D. Zhang, W. Hu, Org. Lett. 2017, 19, 3783-3786; g) A. Choi, R.
M. Morley, I. Coldham, Beilstein J. Org. Chem. 2019, 15, 1480-1484; h) A.
[21] a) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24,
669-681; b) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995-2001.
This article is protected by copyright. All rights reserved.