C O M M U N I C A T I O N S
In conclusion, we have developed a new straightforward approach
to prepare functional RAFT agents for applications in various fields.
The use of a precursor RAFT agent bearing a succinimidyl activated
ester group favors the reaction of amino derivatives without any
competitive degradation of the thiocarbonylthio function. The
generated amido link makes these RAFT agents very stable. In
addition to precursor 1 (leading to a secondary fragment radical
during the RAFT process), another precursor leading to a tertiary
fragment radical has been synthesized (4; see Supporting Informa-
tion).16 This molecule was prepared at the same time by Pan et al.
to elaborate dithioester-terminated dendrimers.19 A wide range of
monomers may be polymerized with the two RAFT agent precursors
or with their amido-linked derivatives, giving rise to polymer chains
carrying a succinimidyl ester or a biomolecule as the R-end group.
Other amino derivatives, either bio-related (nucleotides, lipids,
peptides) or non-bio-related (fluorophores, silanes, polymer chains)
may be introduced into RAFT agents according to this very general
strategy.
Figure 1. (a) 1H NMR (200 MHz) and (b) 13C NMR (50 MHz) spectra of
3c in CDCl3 with the corresponding assignments.
Acknowledgment. The authors thank G. Gody and Dr. P.
Boullanger (UMR 5181, Villeurbanne, France) for the synthesis
of the carbohydrate derivative 2b, Dr. A. Favier (CNRS-
bioMe´rieux) for the synthesis of ACPS, as well as Dr. C. Ladavie`re
(CNRS-bioMe´rieux) for the MALDI-ToF mass spectrometry analy-
ses. M.B. acknowledges the French Research Ministry for a Ph.D.
grant.
Supporting Information Available: Materials and methods and
characterizations of the different RAFT agents. This material is available
Figure 2. N-Acryloylmorpholine (NAM) polymerization mediated by 3a
in dioxane at 90 °C; [NAM]0 ) 1.6 mol‚L-1; [NAM]0/[3a]0 ) 355; [3a]0/
[AIBN]0 ) 10. (a) Kinetics plots. (b) Evolution of molar masses and
polydispersity indexes (PDI) versus conversion.
References
Table 1. Theoretical and Experimental Molar Masses Obtained by
Size Exclusion Chromatography (using light scattering detection)
for N-Acryloylmorpholine RAFT Polymerization Mediated by 1 or
3b or 3c in Dioxane at 90 °C; [NAM]0 ) 1.6 mol‚L-1; [NAM]0/
[RAFT Agent]0 ) 355; [RAFT Agent]0/[AIBN]0 ) 10
(1) Hoffman, A. S. Clin. Chem. 2000, 46, 1478-1486.
(2) Duncan, R. Nat. ReV. Drug DiscoVery 2003, 2, 347-360.
(3) Delair, T.; Charles, M.-H.; Cros, P.; Laayoun, A.; Mandrand, B.; Pichot,
C. Polym. AdV. Technol. 1998, 9, 349-361.
(4) Tao, L.; Mantovani, G.; Lecolley, F.; Haddleton, D. M. J. Am. Chem.
Soc. 2004, 126, 13220-13221.
RAFT
conversion
(%)
theoretical Mn
SEC Mn
1
1
agents
(g.mol-
)
(g.mol-
)
PDI
(5) Kulkarni, S.; Schilli, C.; Mueller, A. H. E.; Hoffman, A. S.; Stayton, P.
S. Bioconjugate Chem. 2004, 15, 747-753.
1
42
82
43
74
28
63
21200
41000
22200
37300
14800
32100
28200
42300
22600
38200
15500
31800
1.07
1.11
1.02
1.03
1.02
1.09
(6) (a) Mantovani, G.; Lecolley, F.; Tao, L.; Haddleton, D. M.; Clerx, J.;
Cornelissen, J. J. L. M.; Velonia, K. J. Am. Chem. Soc. 2005, 127, 2966-
2973. (b) Ladmiral, V.; Monaghan, L.; Mantovani, G.; Haddleton, D. M.
Polymer 2005, 46, 8536-8545. (c) Lecolley, F.; Tao, L.; Mantovani, G.;
Durkin, I.; Lautru, S.; Haddleton, D. M. Chem. Commun. 2004, 18, 2026-
2027.
3b
3c
(7) Bon, S. A. F.; Haddleton, D. M. Polymer Preprints (American Chemical
Society, DiVision of Polymer Chemistry) 1999, 40, 248-249.
(8) (a) Gotz, H.; Harth, E.; Schiller, S. M.; Frank, C. W.; Knoll, W.; Hawker,
C. J. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3379-3391. (b) Qi,
K.; Zhou, C.; Walker, A. V.; Wooley, K. L.; Jhaveri, S. B.; Malkoch, D.
Y. S. M.; Beinhoff, M.; Carter, K. R.; Hawker, C. J. Polymer Preprints
(American Chemical Society, DiVision of Polymer Chemistry) 2005, 46,
363.
(9) Qi, K.; Ma, Q.; Remsen, E. E.; Clark, C. G., Jr.; Wooley, K. L. J. Am.
Chem. Soc. 2004, 126, 6599-6607.
(10) Le, T. P.; Moad, G.; Rizzardo, E.; Thang, S. H. (E.I. Du Pont De Nemours
and Co., USA), WO 9801478, 1998.
higher than 70% was reached in less than 2 h, and the linearity of
the first-order kinetic plot confirmed that steady-state conditions
were fulfilled (Figure 2a). The linear increase of the molar masses
versus conversion (Figure 2b, obtained by aqueous size exclusion
chromatography (SEC) using a three angle light scattering detector;
see Supporting Information) as well as the low PDI values
evidenced the controlled behavior of the polymerization.
Then, the RAFT homopolymerization of NAM was carried out
in the presence of 3b and 3c. Again, an excellent agreement was
observed between experimental and theoretical molar masses
together with low PDI values (Table 1). Finally, MALDI-ToF mass
spectrometry analyses confirmed the presence of the biomolecule
at the chain end: in the case of a poly(NAM)-carbohydrate of
polymerization degree 18, a molar mass of 3029.3 mass units was
obtained for a theoretical value of 3029.6 mass units (3144.5 mass
units for 3144.6 mass units in the case of a poly(NAM)-biotin).
As shown in Table 1, it is worth mentioning that the precursor
1 itself does control the RAFT polymerization of NAM, leading to
polymer chains with a succinimidyl ester R-end group.
(11) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Le, T. P. T.; Mayadunne,
R. T. A.; Meijs, G. F.; Moad, G.; Moad, C. L.; Rizzardo, E.; Thang, S.
H. Macromolecules 1998, 31, 5559-5562.
(12) Chen, M.; Ghiggino, K. P.; Mau, A. W. H.; Rizzardo, E.; Thang, S. H.;
Wilson, G. J. Chem. Commun. 2002, 2276-2277.
(13) Stenzel, M. H.; Davis, T. P.; Fane, A. G. J. Mater. Chem. 2003, 13, 2090-
2097.
(14) Perrier, S.; Takolpuckdee, P.; Westwood, J.; Lewis, D. M. Macromolecules
2004, 37, 2709-2717.
(15) Deletre, M.; Levesque, G. Macromolecules 1990, 23, 4733-4741.
(16) D’Agosto, F.; Bathfield, M.; Charreyre, M.-T. France Patent Application
Filing, July 4, 2005.
(17) Anderson, G. W. J. Am. Chem. Soc. 1964, 86, 1839-1842.
(18) Favier, A.; Charreyre, M.-T.; Pichot, C. Polymer 2004, 45, 8661-8674.
(19) Zheng, Q.; Pan, C.-Y. Macromolecules 2005, 38, 6841-6848.
JA057481C
9
J. AM. CHEM. SOC. VOL. 128, NO. 8, 2006 2547