Communications
ortho-C6H5), 128.688(s, meta-C6H5), 129.206 (s, para-C6H5),
136.069 ppm (s, ipso-C6H5); 1H NMR (400.0 MHz, SO2, RT): d =
0.288 (s, 36H, SiMe2), 7.898 (m, 8H, meta-C6H5), 7.330 (m, 4H,
para-C6H5), 7.233 ppm (m, 8H, ortho-C6H5); 19F NMR (376.3 MHz,
SO2, RT): d = ꢁ74.119 ppm (s, [AlPhF]); 27Al NMR (104.2 MHz, SO2,
RT): d = 29.552 ppm (s, [AlPhF]); 7Li NMR (155.4 MHz, SO2, RT): d =
0.180 ppm (s). FT-IR (KBr, neat, RT, n˜ assigned to [LiD6]+ marked
with *): n˜ = 3666 (w), 3576 (w), 3062 (vw), 2963 (w),* 2899 (vw),* 1622
(m), 1502 (w), 1485(w), 1446 (m),* 1412 (w),* 1331 (m), 1305(s), 1266
going from LiX to LiD6X (DUL
C
(LiD6X) =
and the energy of formation of LiD
A
ACHTREUNG
D6(l) is DE = ꢁ242 kJmolꢁ1 (Scheme 1). Thus, a new class of
salts with cyclosiloxane–metal cations and weakly coordinat-
ing anions can be anticipated.
(vs),* 1223 (s), 1193 (vs), 1198 (vs), 1133 (s), 1078 (s; #as
1026 (s), 1001 (s; #as(SiOSi)),* 996 (vs), 966 (vs), 932 (s), 915(m), 855
(s),* 821 (s),* 795(s; #a(SiC2)),* 761 (m), 743 (m), 713 (vs), 688 (m),*
658 (m; #s(SiOSi)),* 619 (w), 559 (w), 538 (w), 495 (w), 435 (m),
G
Experimental Section
AHCTREUNG
LiD5[AlF]: CH2Cl2 (50 mL) was added to D5 (0.45mL, 1.16 mmol)
E
AHCTREUNG
over solid Li[AlF] (0.985g, 1.01 mmol) in a 100-mL Schlenk flask. The
A
AHCTREUNG
resulting colorless, clear solution was concentrated to saturation by
stirring overnight at room temperature. Large crystals were obtained
after 1 day at ꢁ208C. The solvent was removed under vacuum, and
the crystallized product was washed three times with n-hexane. Yield:
1.25g (90%, based on Li
[AlF]). 29Si{1H} NMR (79.4 MHz, SO2, RT):
R
901 (100) [M+ꢁD6ꢁCF3ꢁ2F], 429 (40) [M+ꢁLi
C
d = ꢁ21.28 ppm (m, D5); 13C{1H} NMR (100.6 MHz, SO2, RT): d =
+
0.893 ppm (s, D5); 1H NMR (400.0 MHz, SO2, RT): d = 0.125ppm (s,
39.70, H 3.84. M.p.: 1328C (decomp).
D5); 19F NMR (376.3 MHz, SO2, RT): d = ꢁ74.113 ppm (s, Li
ACHTREUNG
The following are given in the Supporting Information: general
experimental techniques; a description of the reaction designed to
27Al NMR (104.2 MHz, SO2, RT): d = 35.107 ppm (s, Li
ACHTREUNG
7Li NMR (155.4 MHz, SO2, RT): d = ꢁ0.288 ppm (s, Li
ACHTREUNG
produce Se6Ph2
a comparison of the FT-IR, FT-Raman, and NMR spectra of
LiD5[AlF], LiD6[AlF], and LiD6[AlPhF] with those of the reactants;
different views of the crystal structures of LiD5[AlF], LiD6[AlF], and
LiD6[AlPhF]; and details of the calculations.
A
G
(KBr, solid, RT, n˜ assigned to [LiD5]+ marked with *, e.g. 2972 (w),*):
n˜ = 2972 (w),* 2907 (w),* 1626 (w), 1356 (s),* 1301 (s), 1275 (s),* 1236
A
N
ACHTREUNG
(s), 1215(vs), 1163 (m), 1026 (s; #as
ACHTREUNG
A
ACHTREUNG
(s),* 808 (s),* 752 (m; #a(SiC2)),* 726 (s; #s
G
ACHTREUNG
AHCTREUNG
#
s(SiOSi)),* 572 (w), 568 (m), 555 (m), 534 (m), 439 (m), 401 cmꢁ1
U
(m). FT-Raman (RT, n˜ assigned to [LiD5]+ marked with *): n˜ = 2975
Received: November 30, 2005
Published online: March 20, 2006
(m; #a(CH)),* 2914 (s; #s(CH)),* 1494 (w), 1402 (w), 1276 (w), 797
ꢁ1
(w),* 745(w),* 536 (m), 321 (w), 164 cm
(w). EI-MS (30 eV): m/z
522 (33)
[AlF]ꢁMe =
(%):
539
(20)
[M+ꢁD5ꢁOC
(CF3)3ꢁC2F8O],
G
Keywords: crown compounds · host–guest systems · lithium ·
[M+ꢁD5ꢁC
A
ACHTREUNG
.
+
siloxanes · weakly coordinating anions
D5 ꢁMe]. Elemental analysis (%) calcd: C 23.24, H 2.25; found: C
23.37, H 2.47. M.p.: 2168C (decomp).
LiD
A
N
LiD5[AlF] (Li
A
ACHTREUNG
CH2Cl2 50 mL). Yield: 1.12 g (95%, based on Li
A
[1] N. N. Greenwood, A. Earnshaw, Chemistry of the Elements,
2nd ed. Butterworth-Heinemann, Oxford, 1997, p. 328.
[2] A. Sekiguchi, R. Kinjo, M. Ichinohe, Science 2004, 305, 1755.
[3] M. Ichinohe, M. Igarashi, K. Sanuki, A. Sekiguchi, J. Am. Chem.
Soc. 2005, 127, 9978.
[4] C. Kim, C. A. Reed, D. W. Elliott, L. J. Mueller, F. Tham, L. Lin,
J. B. Lambert, Science 2002, 297, 5582, and references therein.
[5] J. Fischer, J. Baumgartner, C. Marschner, Science 2005, 310, 825.
[6] There is no definite evidence for the existence of neutral BF3
adducts of silicon ethers: H. J. EmelØus, M. Onyszchuk, J. Chem.
Soc. 1958, 604. A protonated silanol that is stable at room
(79.4 MHz, SO2, RT): d = ꢁ9.22 ppm (s, SiMe2); 13C{1H} NMR
(100.6 MHz, SO2, RT): d = 120.011 (q, J
(C,F) = 291 Hz, 3C, CF3),
79.219 (s, 1C, OCCF3), 0.202 ppm (s, 3C, SiMe2); 1H NMR
(400.0 MHz, SO2, RT): d = 0.296 ppm (s, SiMe2); 19F NMR
(376.3 MHz, SO2, RT): d = ꢁ75.193 ppm (s, [AlF]); 27Al NMR
(104.2 MHz, SO2, RT): d = 34.998 ppm (s, [AlF]); 7Li NMR
(155.4 MHz, SO2, RT): d = 0.190 ppm (s). IR (KBr, neat, RT, n˜
assigned to [LiD6]+ marked with *): n˜ = 2965(m),* 2916 (w),* 1537
(w), 1494 (w),* 1408 (m),* 1377 (w),* 1352 (s), 1300 (s), 1276 (s),*
1241 (s), 1216 (s), 1167 (s), 1132 (m), 1087 (s; #as
968 (s), 853 (s),* 822 (s),* 794 (s; #a(SiC2)),* 752 (m; #a
(s; #s(SiC2)),* 665(w; #s(SiOSi)),* 619 (m; #s(SiOSi)),* 560 (m), 532
ACHTREUNG
A
N
temperature occurs in the salt tBu3Si(OH2)[Br6CB11H6], which
E
A
N
R
has been isolated and crystallographically characterized: Z. Xie,
R. Bau, C. A. Reed, J. Chem. Soc. Chem. Commun. 1994, 2519.
For siloxonium ions unstable above ꢁ308C, see: a) G. A. Olah,
H. Doggweiler, J. D. Felberg, S. Frohlich, J. Org. Chem. 1985, 50,
4847; b) M. Kira, T. Hino, H. Sakurai, J. Am. Chem. Soc. 1992,
114, 6697; c) G. A. Olah, X. Li, Q. Wang, G. Rasul, G. K. S.
Prakash, J. Am. Chem. Soc. 1995, 117, 8962.
(m), 441 (m), 396 cmꢁ1 (s). Raman (RT, n˜ assigned to [LiD6]+ marked
with *): n˜ = 2975(s; #a(CH)),* 2915(vs; #s(ꢁC1H)),* 1495(w), 797 (w),*
745(w),* 452 (m), 320 (w), 168 cm
(w). EI-MS (30 eV):
m/z (%): 539 (15) [M+ꢁD6ꢁOC
ACHTREUNG
[M+ꢁD6ꢁC
R
U
+
D6 ꢁMe]. Elemental analysis (%) calcd: C 23.72, H 2.56; found C
23.77, H 2.60. M.p. 2868C (decomp).
[7] a) M. J. Hunter, J. F. Hyde, E. L. Warrick, H. J. Fletchers, J. Am.
Chem. Soc. 1946, 68, 667; b) W. Patnode, D. F. Wilcock, J. Am.
Chem. Soc. 1946, 68, 358; c) J. F. Hyde, R. C. Delong, J. Am.
Chem. Soc. 1941, 63, 1194; d) T. Alvik, J. Dale, Acta. Chem.
Scand. 1971, 25, 2131, and references therein.
[8] C. J. Pedersen, J. Am. Chem. Soc. 1967, 89, 7017.
[9] O. Mikio, I. Yoshihisa, K. Takashi, H. Tadao, Bull. Chem. Soc.
Jpn. 1984, 57, 887.
[10] a) R. West, L. Whatley, K. Lake, J. Am. Chem. Soc. 1961, 83, 761;
b) B. D. Shepherd, J. Am. Chem. Soc. 1991, 113, 5581, and
references therein. The lower basicity of siloxanes is also
reflected in their higher ionization energy Ei compared to
LiD6
ACHTREUNG
0.97 mmol) over solid Li
AHCTREUNG
Schlenk flask. The resulting yellowish, clear solution was stirred
overnight at room temperature. n-Hexane (40 mL) was added to the
solution, and a large amount of crystals was obtained after 1 day at
ꢁ208C. The crystals were separated by filtration, and the filtrate was
further concentrated to one third, producing more crystals, which
were washed with n-hexane. Total yield: 1.17 g (85%, based on
Li
SiMe2); 13C{1H} NMR (100.6 MHz, SO2, RT): d = 0.454 (s, SiMe2),
80.085(s, O C(CF3)2Ph), 125.763 (q, J(C,F) = 291 Hz, CF3), 128.186 (s,
[AlPhF]). 29Si{1H} NMR (79.4 MHz, SO2, RT): d = ꢁ10.14 ppm (s,
E
ACHTREUNG
2776
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 2773 –2777