Page 9 of 11
ACS Catalysis
(9) (a) Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P.,
Methylenecarboxamides and Alkyl N-Methylenecarbamates. Synthesis
1984, 8, 688–690. (c) Vidal, J.; Damestoy, S.; Guy, L.; Hannachi, J.;
Aubry, A.; Collet, A., N-Alkyloxycarbonyl-3-aryloxaziridines: Their
Preparation, Structure, and Utilization as Electrophilic Amination
Reagents. Chem. Eur. J. 1997, 3, 1691–1709. (d) Matsuo, J.; Tanaki, Y.;
Kido, A.; Ishibashi, H., A Mild and Convenient Synthesis of N-
Carbobenzyloxy Ketimines. Chem. Commun. 2006, 2896–2898. (e)
Zanardi, A.; Mata, J. A.; Peris, E., One-pot Preparation of Imines from
Nitroarenes by a Tandem Process with an Ir-Pd Heterodimetallic
Catalyst. Chem. Eur. J. 2010, 16, 10502–10506. (f) Yin, B.; Zhang, Y.;
Xu, L.-W., Recent Applications of -Amido Sulfones as in situ
Equivalents of Activated Imines for Asymmetric Catalytic Nucleophilic
Addition Reactions. Synthesis 2010, 21, 3583–3595.
(14) Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y., Photocatalytic
Decarboxylative Alkylations Mediated by Triphenylphosphine and
Sodium Iodide. Science 2019, 363, 1429–1434.
(15) Kwon, Y.; Rhee, Y. H.; Park, J., Chemoselective, Isomerization-free
Synthesis of N-Scylketimines from N–H Imines. Adv. Synth. Catal.
2017, 359, 1503–1507.
(16) (a) Hoffmann, S.; Seayad, A. M.; List, B., A Powerful Brønsted Acid
Catalyst for the Organocatalytic Asymmetric Transfer Hydrogenation of
Imines. Angew. Chem. Int. Ed. 2005, 44, 7424–7427. (b) Wang, Z.; Ye,
X.; Wei, S.; Wu, P.; Zhang, A.; Sun, J., A Highly Enantioselective Lewis
Basic Organocatalyst for Reduction of N-Aryl Imines with
Unprecedented Substrate Spectrum. Org. Lett. 2006, 8, 999–1001. (c) Li,
G.; Liang, Y.; Antilla, J. C., A Vaulted Biaryl Phosphoric Acid-catalyzed
Reduction of -Imino Esters: the Highly Enantioselective Preparation of
-Amino Esters. J. Am. Chem. Soc. 2007, 129, 5830–5831. (d) You, S.-
L., Recent Developments in Asymmetric Transfer Hydrogenation with
Hantzsch Esters: a Biomimetic Approach. Chem. Asian J. 2007, 2, 820–
827. (e) Pei, D.; Zhang, Y.; Wei, S. Y.; Wang, M.; Sun, J., Rationally-
Designed S-chiral Bissulfinamides as Highly Enantioselective
Organocatalysts for Reduction of Ketimines. Adv. Synth. Catal. 2008,
350, 619–623. (f) Guizzetti, S.; Benaglia, M.; Rossi, S., Highly
Stereoselective Metal-free Catalytic Reduction of Imines: an Easy Entry
to Enantiomerically Pure Amines and Natural and Unnatural -Amino
Esters. Org. Lett. 2009, 11, 2928–2931. (g) Li, G.; Antilla, J. C., Highly
Enantioselective Hydrogenation of Enamides Catalyzed by Chiral
Phosphoric Acids. Org. Lett. 2009, 11, 1075–1078. (h) Malkov, A. V.;
Vranková, K.; Stončius, S.; Kočovský, P., Asymmetric Reduction of
Imines with Trichlorosilane, Catalyzed by Sigamide, an Amino Acid-
derived Formamide: Scope and Limitations. J. Org. Chem. 2009, 74,
5839–5849. (i) Bonsignore, M.; Benaglia, M.; Raimondi, L.; Orlandi,
M.; Celentano, G., Enantioselective Reduction of Ketoimines Promoted
by Easily Available (S)-Proline Derivatives. Beilstein J. Org. Chem.
2013, 9, 633–640. (j) Wen, W.; Zeng, Y.; Peng, L.-Y.; Fu, L.-N.; Guo,
Q.-X., Asymmetric Synthesis of -Amino Ketones by Brønsted Acid
Catalysis. Org. Lett. 2015, 17, 3922–3925.
(17) (a) Rueping, M.; Sugiono, E.; Azap, C.; Theissmann, T.; Bolte, M.,
Enantioselective Brønsted Acid Catalyzed Transfer Hydrogenation:
Organocatalytic Reduction of Imines. Org. Lett. 2005, 7, 3781–3783. (b)
Rueping, M.; Azap, C.; Sugiono, E.; Theissmann, T., Brønsted Acid
Catalysis: Organocatalytic Hydrogenation of Imines. Synlett 2005, 15,
2367–2369. (c) Fleischmann, M.; Drettwan, D.; Sugiono, E.; Rueping,
M.; Gschwind, R. M., Brønsted Acid Catalysis: Hydrogen Bonding
versus Ion Pairing in Imine Activation. Angew. Chem. Int. Ed. 2011, 50,
6364–6369. (d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M.,
Complete Field Guide to Asymmetric BINOL-phosphate Derived
Brønsted Acid and Metal Catalysis: History and Classification by Mode
of Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and
Metal Phosphates. Chem. Rev. 2014, 114, 9047–9153.
Ligand Bite Angle Effects in Metal-catalyzed C-C Bond Formation.
Chem. Rev. 2000, 100, 2741–2769. (b) Shang, R.; Fu, Y.; Li, J.-B.;
Zhang, S.-L.; Guo, Q.-X.; Liu, L., Synthesis of Aromatic Esters via Pd-
catalyzed Decarboxylative Coupling of Potassium Oxalate Monoesters
with Aryl Bromides and Chlorides. J. Am. Chem. Soc. 2009, 131, 5738–
5739. (c) Birkholz (née Gensow), M.-N.; Freixab, Z.; Leeuwen, P. W.
N. M., Bite Angle Effects of Diphosphines in C–C and C–X Bond
Forming Cross Coupling Reactions. Chem. Soc. Rev. 2009, 38, 1099–
1118. (d) Shang, R.; Yang, Z.-W.; Wang, Y.; Zhang, S.-L.; Liu, L.,
1
2
3
4
5
6
7
8
Palladium-Catalyzed
Decarboxylative
Couplings
of
2-(2-
Azaaryl)acetates with Aryl Halides and Triflates. J. Am. Chem. Soc.
2010, 132, 14391–14393. (e) Fernández-Pérez, H.; Etayo, P.; Panossian,
A.; Vidal-Ferran, A., Phosphine-phosphinite and Phosphine-phosphite
Ligands: Preparation and Applications in Asymmetric Catalysis. Chem.
Rev. 2011, 111, 2119–2176. (f) Fischer, C.; Koenig, B., Palladium- and
Copper-mediated N-Aryl Bond Formation Reactions for the Synthesis of
Biological Active Compounds. Beilstein J. Org. Chem. 2011, 7, 59–74.
(g) Huang, W.; Buchwald, S. L., Palladium-catalyzed N-arylation of
Iminodibenzyls and Iminostilbenes with Aryl- and Heteroaryl halides.
Chem. Eur. J. 2016, 22, 14186–14189. (h) Olsen, E. P. K.; Arrechea, P.
L.; Buchwald, S. L., Mechanistic Insight Leads to A Ligand which
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Facilitates
the
Palladium-catalyzed
Formation
of
2-
(Hetero)arylaminooxazoles and 4-(Hetero)arylaminothiazoles. Angew.
Chem. Int. Ed. 2017, 56, 10569–10572. (i) Zhang, H.; Ruiz-Castillo, P.;
Buchwald, S. L., Palladium-catalyzed C–O Cross-coupling of Primary
Alcohols. Org. Lett. 2018, 20, 1580–1583. (j) Li, R.; Dong, G., Direct
Annulation between Aryl Iodides and Epoxides through
Palladium/norbornene Cooperative Catalysis. Angew. Chem. Int. Ed.
2018, 57, 1697–1701. (k) Jin, L.; Wang, J.; Dong, G., Palladium-
catalyzed -C(sp3)-H Arylation of Thiols by
a
Detachable
Protecting/directing Group. Angew. Chem. Int. Ed. 2018, 57, 12352–
12355. (l) Li, R.; Liu, F.; Dong, G., Redox-neutral ortho
Functionalization of Aryl Boroxines via Palladium/norbornene
Cooperative Catalysis. Chem 2019, 5, 929–940.
(10) (a) Amatore, C.; Jutand, A., Anionic Pd(0) and Pd(II) Intermediates in
Palladium-catalyzed Heck and Cross-coupling Reactions. Acc. Chem.
Res. 2000, 33, 314–321. (b) Frisch, A. C.; Beller, M., Catalysts for Cross-
coupling Reactions with Non-activated Alkyl Halides. Angew. Chem.
Int. Ed. 2005, 44, 674–688. (c) Sargent, B. T.; Alexanian, E. J.,
Palladium-catalyzed Alkoxycarbonylation of Unactivated Secondary
Alkyl Bromides at Low Pressure. J. Am. Chem. Soc. 2016, 138, 7520–
7523.
(11) (a) Rasmussen, J. K., O-silylated Enolates-versatile Intermediates for
Organic Synthesis. Synthesis 1977, 2, 91–110. (b) Reetz, M. T., Lewis
Acid Induced -Alkylation of Carbonyl Compounds. Angew. Chem. Int.
Ed. 1982, 21, 96–108. (c) Brownbridge, P., Enol Ethers in Synthesis.
Synthesis 1983, 1, 85–104. (d) Kuwajima, I.; Nakamura, E. Reactive
Enolates from Enol Silyl Ethers. Acc. Chem. Res. 1985, 18, 181–187. (e)
Evans, D. A.; Black, W. C., Total Synthesis of (+)-A83543A [(+)-
Lepicidin A]. J. Am. Chem. Soc. 1993, 115, 4497–4513. (f) Johnson, C.
R.; Raheja, R. K., Hydrosilylation of Enones: Platinum
Divinyltetramethyldisiloxane Complex in the Preparation of
Triisopropylsilyl and Triphenylsilyl Enol Ethers. J. Org. Chem. 1994,
59, 2287–2288. (g) Cahard, D.; Duhamel, P., Alkoxide-mediated
Preparation of Enolates from Silyl Enol Ethers and Enol Acetates-from
Discovery to Synthetic Applications. Eur. J. Org. Chem. 2001, 1023–
1031.
(12) (a) Hatakeyama, T.; Ito, S.; Nakamura, M.; Nakamura, E., Alkylation
of Magnesium Enamide with Alkyl Chlorides and Fluorides. J. Am.
Chem. Soc. 2005, 127, 14192–14193. (b) Zhao, H.; Vandenbossche, C.
P.; Koenig, S. G. Singh, S. P.; Bakale, R. P., An Efficient Synthesis of
Enamides from Ketones. Org. Lett. 2008, 10, 505–507. (c) Hesp, K. D.;
Bergman, R. G.; Ellman J. A., Expedient Synthesis of N-acyl
Anthranilamides and -Enamine Amides by the Rh(III)-catalyzed
Amidation of Aryl and Vinyl C–H Bonds with Isocyanates. J. Am. Chem.
Soc. 2011, 133, 11430–11433. (d) Reeves, J. T.; Tan, Z.-L.; Han, Z. S.;
Li, G.-S.; Zhang, Y.-D.; Xu, Y.-B.; Reeves, D. C.; Gonnella, N. C.; Ma,
S.-L.; Lee, H.; Lu, B. Z.; Senanayake, C. H., Direct Titanium-mediated
Conversion of Ketones into Enamides with Ammonia and Acetic
Anhydride. Angew. Chem. Int. Ed. 2012, 51, 1400–1404.
(18) (a) Shibasaki, M.; Kanai, M., Asymmetric Synthesis of Tertiary
Alcohols and -Tertiary Amines via Cu-catalyzed C–C Bond Formation
to Ketones and Ketimines. Chem. Rev. 2008, 108, 2853–2873. (b) Vasu,
D.; de Arriba, A.L.F.; Leitch, J. A.; de Gombert, A.; Dixon, D.J., Primary
-Tertiary Amine Synthesis via -C–H Functionalization. Chem. Sci.
2019, 10, 3401–3407.
(19) (a) Park, C.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan,
V., Palladium-catalyzed Arylation and Heteroarylation of Indolizines.
Org. Lett. 2004, 6, 1159–1162. (b) Shu, W.; Nevado, C., Visible-light-
mediated Remote Aliphatic C–H Functionalizations Through a 1,5-
Hydrogen Transfer Cascade. Angew. Chem. Int. Ed. 2017, 56, 1881–
1884. (c) Chuentragool, P.; Yadagiri, D.; Morita, T.; Sarkar, S.;
Parasram, M.; Wang, Y.; Gevorgyan, V., Aliphatic Radical Relay Heck
(13) (a) Padwa, A.; Akiba, M.; Cohen, L. A.; MacDonald, J. G.,
Sigmatropic Rearrangements in the Allyl Substituted Oxazolinone
System. Tetrahedron Lett. 1981, 22, 2435–2438. (b) Kupfer, R.; Meier,
S.; Würthwein, E., A Facile Method for the Synthesis of Substituted N-
ACS Paragon Plus Environment