A R T I C L E S
Gong et al.
Chart 1. Structures of Natural Illudins and Semisynthetic
Derivatives, AFs
(-)-hydroxymethylacylfulvene (4, (-)-HMAF; Chart 1) is
currently in clinical trials and is being evaluated in the treatment
of various human cancers including prostate and advanced solid
and ovarian tumors.19-23 Emerging concerns regarding dose-
limiting toxicities, however, indicate that an improved under-
standing of the detailed mechanism of action is required to
elucidate the novel mechanism of AFs for selective toxicity as
well as for identifying strategies for effectively targeting
sensitive cancers and for developing improved combination
therapies.24,25
Like many well-characterized alkylating antitumor agents,26-29
the cytotoxicities of AFs are thought to originate primarily from
covalent binding to DNA16,17,30,31 DNA damage induction by
AFs has been established by incorporation of radioactivity into
DNA isolated from cells treated with [14C]AFs.16,30 Furthermore,
recent studies indicate that the toxicities of AFs are influenced
by deficiencies in certain DNA repair pathways, such as
transcription-coupled nucleotide excision repair (TC-NER)
enzymes.32,33
Figure 1. Extracted ion chromatographs from HPLC-ESI-MS/MS analysis
of reactions of AF with monomeric nucleosides in the presence of AOR/
NADPH. (a) AF-dAdo, transition of m/z 452 [M + 1]+ to m/z 336 [M -
deoxyribose + 1]+; (b) AF-Ade, transition of m/z 336 [M + 1]+ to m/z
201 [M - Ade]+; (c) AF-Gua, transition of m/z 352 [M + 1]+ to m/z 201
[M - Gua]+; (d) AF-dCyd, transition of m/z 428 [M + 1]+ to m/z 201 [M
- dCyd]+; (e) AF-Thd, transition of m/z 443 [M + 1]+ to m/z 201 [M -
Thd]+.
AFs are less chemically reactive than the parent illudins and
have generally higher IC50’s for cancer cell lines.12,34 On the
basis of the structures of AF metabolites, it has been proposed
that reductive bioactivation, by cytosolic enzymes14,35,36 via
reduction of the carbon-carbon double bond of the R, â-un-
saturated ketone, leads to the formation of the postulated reactive
cyclohexadiene intermediate 5 (Scheme 1). We have obtained
evidence suggesting the biological role of a specific enzyme,
alkenal/one oxidoreductase (AOR),37-40 in the activation of
AFs,41-43 including an association between elevated AOR levels
and increased cellular sensitivity to AFs.41-43
Putative chemical transformations of AFs are illustrated in
Scheme 1. Hydrolysis of 5 gives rise to the major observed
metabolite 8. Intermediate 5 may also lead to monofunctional
DNA adducts, via attack of the cyclopropyl group by a DNA
base, though such monoadducts generally are considered less
lethal than cross-links common to DNA-targeting anticancer
agents, such as nitrogen mustards.44 Alternatively, AFs could
be envisioned to be activated chemically if cellular nucleophiles,
such as glutathione, were to attack the carbon-carbon double
(16) Woynarowska, B. A.; Woynarowski, J. M.; Herzig, M. C. S.; Roberts, K.;
Higdon, A. L.; MacDonald, J. R. Biochem. Pharmacol. 2000, 59, 1217-
1226.
(17) Woynarowska, B. A.; Woynarowski, J. M. Biochim. Biophys. Acta -
Molecular Basis of Disease 2002, 1587, 309-317.
(18) MacDonald, J. R.; Muscoplat, C. C.; Dexter, D. L.; Mangold, G. L.; Chen,
S.-F.; Kelner, M. J.; McMOrric, T. C.; Von Hoff, D. D. Cancer Res. 1997,
57, 279-283.
(19) Senzer, N.; Arsenau, J.; Richards, D.; Berman, B.; MacDonald, J. R.; Smith,
S. Amer. J. Clin. Oncol. 2005, 28, 36-42.
(20) Alexandre, J.; Raymond, E.; Kaci, M. O.; Brain, E. C.; Lokiec, F. O.; Kahatt,
C.; Faivre, S.; Yovine, A.; Goldwasser, F. O.; Smith, S. L.; MacDonald,
J. R.; Misset, J. L.; Cvitkovic, E. Clin. Cancer Res. 2004, 10, 3377-3385.
(21) Raymond, E.; Kahatt, C.; Rigolet, M. H.; Sutherland, W.; Lokiec, F.;
Alexandre, J.; Tombal, B.; Elman, M.; Lee, M. S.; MacDonald, J. R.; Cullen,
M.; Misset, J. L.; Cvitkovic, E. Clin. Cancer Res. 2004, 10, 7566-7574.
(22) Seiden, M. V.; Gordon, A. N.; Bodurka, D. C.; Matulonis, U. A.; Penson,
R. T.; Reed, E.; Alberts, D. S.; Weems, G.; Cullen, M.; McGuire, W. P.
Gynecol. Oncol. 2006, 101, 55-61.
(23) Hilgers, W.; Faivre, S.; Chieze, S.; Alexandre, J.; Lokiec, F.; Goldwasser,
F.; Raymond, E.; Kahatt, C.; Taamma, A.; Weems, G.; MacDonald, J. R.;
Misset, J. L.; Cvitkovic, E. InVest. New Drugs 2006, 24, 311-319.
(24) Woo, M. H.; Peterson, J. K.; Billups, C.; Liang, H.; Bjornsti, M. A.;
Houghton, P. J. Cancer Chemother. Pharmacol. 2005, 55, 411-419.
(25) Serova, M.; Calvo, F.; Lokiec, F.; Koeppel, F.; Poindessous, V.; Larsen,
A. K.; Van Laar, E. S.; Waters, S. J.; Cvitkovic, E.; Raymond, E. Cancer
Chemother. Pharmacol. 2006, 57, 491-499.
(26) Boger, D. L.; Garbaccio, R. M. Acc. Chem. Res. 1999, 32, 1043-1052.
(27) Parrish, J. P.; Kastrinsky, D. B.; Wolkenberg, S. E.; Igarashi, Y.; Boger,
D. L. J. Am. Chem. Soc. 2003, 125, 10971-10976.
(35) McMorris, T. C.; Elayadi, A.; Yu, J.; Hu, Y.; Kelner, M. J. Drug Metab.
Dispos. 1999, 27, 983-985.
(36) McMorris, T. C.; Elayadi, A. N.; Yu, J.; Kelner, M. J. Biochem. Pharmacol.
1999, 57, 83-88.
(28) Gates, K. S. Chem. Res. Toxicol. 2000, 13, 953-956.
(29) Tomasz, M.; Palom, Y. Pharmacol. Ther. 1997, 76, 73-87.
(30) Herzig, M. C. S.; Arnett, B.; MacDonald, J. R.; Woynarowski, J. M.
Biochem. Pharmacol. 1999, 58, 217-225.
(37) Ensor, C. M.; Zhang, H. X.; Tai, H. H. Biochem. J. 1998, 330, 103-108.
(38) Clish, C. B.; Levy, B. D.; Chiang, N.; Tai, H. H.; Serhan, C. N. J. Biol.
Chem. 2000, 275, 25372-25380.
(31) Woynarowski, J. M.; Napier, C.; Koester, S. K.; Chen, S.-F.; Troyer, D.;
Chapman, W.; MacDonald, J. R. Biochem. Pharmcol. 1997, 54, 1181-
1193.
(39) Hori, T.; Yokomizo, T.; Ago, H.; Sugahara, M.; Ueno, G.; Yamamoto,
M.; Kumasaka, T.; Shimizu, T.; Miyano, M. FASEB J. 2004, 18, C281.
(40) Dick, R. A.; Kwak, M.-K.; Sutter, T. R.; Kensler, T. W. J. Biol. Chem.
2001, 276, 40803-40810.
(32) Jaspers, N. G. J.; Raams, A.; Kelner, M. J.; Ng, J. M. Y.; Yamashita,
Y. M.; Takeda, S.; McMorris, T. C.; Hoeijmakers, J. H. J. DNA Repair
2002, 1, 1027-1038.
(41) Gong, J. C.; Neels, J. F.; Yu, X.; Kensler, T. W.; Peterson, L. A.; Sturla,
S. J. J. Med. Chem. 2006, 49, 2593-2599.
(33) Koeppel, F.; Poindessous, V.; Lazar, V.; Raymond, E.; Sarasin, A.; Larsen,
A. K. Clin. Cancer Res. 2004, 10, 5604-5613.
(42) Dick, R. A.; Kensler, T. W. J. Biol. Chem. 2004, 279, 17269-17277.
(43) Dick, R. A.; Yu, X.; Kensler, T. W. Clin. Cancer Res. 2004, 10, 1492-
1499.
(34) McMorris, T. C.; Yu, J.; Estes, L. A.; Kelner, M. J. Tetrahedron 1997, 53,
14579-14590.
(44) Noll, D. M.; Mason, T. M.; Miller, P. S. Chem. ReV. 2006, 106, 277-301.
9
2102 J. AM. CHEM. SOC. VOL. 129, NO. 7, 2007