ORGANIC
LETTERS
2007
Vol. 9, No. 8
1529-1532
Stereochemical and Skeletal Diversity
Employing Pipecolate Ester Scaffolds
Yu Chen, John A. Porco, Jr.,* and James S. Panek*
Department of Chemistry and Center for Chemical Methodology and Library
DeVelopment (CMLD-BU), Metcalf Center for Science and Engineering,
590 Commonwealth AVenue, Boston UniVersity, Boston, Massachusetts 02215
porco@bu.edu; panek@bu.edu
Received February 7, 2007
ABSTRACT
The stereocontrolled synthesis of pyridooxazinones by Mg(OTf)2-promoted epoxide ring-opening with use of chiral pipecolates as nucleophiles
is described. Pyridooxazinone products derived from azido-epoxides can be further rearranged to seven-membered pyridodiazepinones by
azide reduction. The sequence of functional group interconversions generates diversity through topological and stereochemical variation.
The development of reaction methodology that allows rapid
access to structurally and stereochemically diverse frame-
works and scaffolds plays an important role in diversity-
oriented synthesis (DOS).1 Accordingly, methodology to
access new chemotypes in a stereocontrolled manner would
be a useful contribution to this area.2 Bicyclic alkaloids such
as quinolizidines and indolizidines incorporating a nitrogen
at the ring junction have a rich and diverse history as
pharmacological agents, and present an opportunity to create
DOS strategies loosely based on the natural product scaf-
folds.3
This Letter describes the assembly of stereochemically and
topologically diverse six- and seven-membered pyridoox-
azinones and pyridodiazepinones, respectively. The work also
illustrates the use of our amino-functionalized silane reagents4a
in the context of DOS. The approach makes efficient use of
our annulation strategy that provides enantioenriched pipe-
colates 3 and 6 as stereochemically diverse building blocks.4
An epoxide opening, lactonization, and ring expansion
sequence highlight a series of functional group interconver-
(2) (a) Wipf, P.; Stephenson, C. R. J.; Walczak, M. A. A. Org. Lett.
2004, 6, 3009-3012. (b) Gan, Z.; Reddy, P. T.; Quevillon, S.; Couve-
Bonnaire, S.; Arya, P. Angew. Chem., Int. Ed. 2005, 44, 1366-1368. (c)
Kesavan, S.; Su, Q.; Shao, J.; Porco, J. A., Jr.; Panek, J. S. Org. Lett.,
2005, 7, 4435-4438. (d) Beeler, A. B.; Acquilano, D. E.; Su, Q.; Yan, F.;
Roth, B. L.; Panek, J. S.; Porco, J. A., Jr. J. Comb. Chem. 2005, 7, 673-
681. (e) Adriaenssens, L. V.; Austin, C. A.; Gibson, M.; Smith, D.; Hartley,
R. C. Eur. J. Org. Chem. 2006, 22, 4998-5001. (f) Dandapani, S.; Lan,
P.; Beeler, A. B.; Beischel, S.; Abbas, A.; Roth, B. L.; Porco, J. A., Jr.;
Panek, J. S. J. Org. Chem. 2006, 71, 8934-8945. (g) Fitzmaurice, R. J.;
Etheridge, Z. C.; Jumel, E.; Woolfson, D. N.; Caddick, S. Chem. Commun.
2006, 46, 4814-4816. (h) Freifeld, L.; Holtz, E.; Dahmann, G.; Langer, P.
Eur. J. Org. Chem. 2006, 14, 3251-3258. (i) Beeler, A. B.; Su, S.;
Singleton, C. A.; Porco, J. A., Jr. J. Am. Chem. Soc. 2007, 129, 1413-
1419. (j) Franz, A. K.; Dreyfuss, P. D.; Schreiber, S. L. J. Am. Chem. Soc.
2007, 129, 1020-1021.
(1) For lead references on DOS, see: (a) Schreiber, S. L. Science 2000,
287, 1964-1969. (b) Itami, K.; Nokami, T.; Ishimura, Y.; Mitsudo, K.;
Kamei, T.; Yoshida, J. J. Am. Chem. Soc. 2001, 123, 11577-11585. (c)
Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46-58.
(d) Arya, P.; Joseph, R.; Gan, Z.; Rakic, B. Chem. Biol. 2005, 12, 163-
180.
(3) (a) Garraffo, H. M.; Caceres, J.; Daly, J. W.; Spande, T. F. J. Nat.
Prod. 1993, 56, 1016-1038. (b) Fantauzzi, P. P.; Yager, K. M. Tetrahedron
Lett. 1998, 39, 1291-1294. (c) Jiang, W.; Alford, V. C.; Qiu, Y.;
Bhattacharjee, S.; John, T. M.; Haynes-Johnson, D.; Kraft, P. J.; Lundeen,
S. G.; Sui, Z. Bioorg. Med. Chem. 2004, 12, 1505-1515. (d) Daly, J. W.;
Spande, T. F.; Garraffo, H. M. J. Nat. Prod. 2005, 68, 1556-1575.
10.1021/ol070321g CCC: $37.00
© 2007 American Chemical Society
Published on Web 03/17/2007