Angewandte
Chemie
Table 2: RhI/H8-binap-catalyzed regio- and enantioselective [2+2+2]
cycloaddition of unsymmetrical 1,6-diynes with monoalkynes.
Keywords: alkynes · biaryls · cycloaddition · phosphorus ·
rhodium
.
[1] H. Shimizu, I. Nagasaki, T. Saito, Tetrahedron 2005, 61, 5405 –
5432.
[2] Y. Uozumi, T. Hayashi, J. Am. Chem. Soc. 1991, 113, 9887 – 9888.
[3] T. Hayashi, Acc. Chem. Res. 2000, 33, 354 – 362.
[4] T. Hayashi, S. Niizuma, T. Kamikawa, N. Suzuki, Y. Uozumi, J.
Am. Chem. Soc. 1995, 117, 9101 – 9102.
[5] For pioneering work on the enantioselective synthesis of axially
chiral biaryl compounds by metal-catalyzed cross-coupling, see:
T. Hayashi, K. Hayashizaki, T. Kiyoi, Y. Ito, J. Am. Chem. Soc.
1988, 110, 8153 – 8154.
[6] For recent reviews concerning the atroposelective synthesis of
axially chiral biaryl compounds, see: a) G. Bringmann, A. J. P.
Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning,
Angew. Chem. 2005, 117, 5518 – 5563; Angew. Chem. Int. Ed.
2005, 44, 5384 – 5427; b) T. W. Wallace, Org. Biomol. Chem.
2006, 4, 3197 – 3210.
Entry 1 (R1, R2, equiv) 2 (R3)
Yield [%][a]
ee [%]
3
4
3
4
1
2
3
4
5
1d (Ph, Me, 1.5) 2a (OEt)
80[b] <1
73[c] <1
34[d] <1
86 (À)
96 (À)
74 (À)
–
–
–
1e (Ph, H, 3.0)
1e (Ph, H, 3.0)
2a (OEt)
2d (Ph)
[7] J. Yin, S. L. Buchwald, J. Am. Chem. Soc. 2000, 122, 12051 –
12052.
1 f (Me, H, 1.5) 2a (OEt)
1 f (Me, H, 3.0) 2d (Ph)
65
54
35
46
93 (+) 87 (À)
58 (À) 86 (À)
[8] For recent reviews of transition-metal-catalyzed [2+2+2] cyclo-
additions, see: a) P. R. Chopade, J. Louie, Adv. Synth. Catal.
2006, 348, 2307 – 2327; b) V. Gandon, C. Aubert, M. Malacria,
Chem. Commun. 2006, 2209 – 2217; c) S. Kotha, E. Brahmachary,
K. Lahiri, Eur. J. Org. Chem. 2005, 4741 – 4767; d) Y. Yamamoto,
Curr. Org. Chem. 2005, 9, 503 – 519; e) J. E. Robinson in Modern
Rhodium-Catalyzed Organic Reactions (Ed.: P. A. Evans),
Wiley-VCH, Weinheim, 2005, chap. 7, pp. 129 – 150; f) J. A.
Varela, C. Saà, Chem. Rev. 2003, 103, 3787 – 3801; g) M.
Malacria, C. Aubert, J. L. Renaud in Science of Synthesis:
Houben-Weyl Methods of Molecular Transformations, Vol. 1
(Eds.: M. Lautens, B. M. Trost), Thieme, New York, 2001,
pp. 439 – 530; h) S. Saito, Y. Yamamoto, Chem. Rev. 2000, 100,
2901 – 2915.
[9] For our first report on inter- and intramolecular [2+2+2]
cycloadditions catalyzed by a cationic complex between rho-
dium(I) and a modified binap ligand, see: K. Tanaka, K.
Shirasaka, Org. Lett. 2003, 5, 4697 – 4699.
[10] For the application of cationic rhodium(I)/modified-binap com-
plexes to the synthesis of cyclophanes, see: a) K. Tanaka, K.
Toyoda, A. Wada, K. Shirasaka, M. Hirano, Chem. Eur. J. 2005,
11, 1145 – 1156; b) K. Tanaka, H. Sagae, K. Toyoda, K. Noguchi,
Eur. J. Org. Chem. 2006, 3575 – 3581; c) K. Tanaka, H. Sagae, K.
Toyoda, K. Noguchi, M. Hirano, J. Am. Chem. Soc. 2007, 129,
1522 – 1523.
[11] For the application of cationic rhodium(I)/modified-binap com-
plexes to the synthesis of heterocycles, see: a) K. Tanaka, A.
Wada, K. Noguchi, Org. Lett. 2005, 7, 4737 – 4739; b) K. Tanaka,
A. Wada, K. Noguchi, Org. Lett. 2006, 8, 907 – 909; c) K. Tanaka,
N. Suzuki, G. Nishida, Eur. J. Org. Chem. 2006, 3917 – 3922.
[12] For the application of cationic rhodium(I)/modified-binap com-
plexes to the synthesis of axially chiral compounds, see: a) K.
Tanaka, G. Nishida, A. Wada, K. Noguchi, Angew. Chem. 2004,
116, 6672 – 6674; Angew. Chem. Int. Ed. 2004, 43, 6510 – 6512;
b) K. Tanaka, G. Nishida, M. Ogino, M. Hirano, K. Noguchi,
Org. Lett. 2005, 7, 3119 – 3121; c) K. Tanaka, K. Takeishi, K.
Noguchi, J. Am. Chem. Soc. 2006, 128, 4586 – 4587; d) G.
Nishida, N. Suzuki, K. Noguchi, K. Tanaka, Org. Lett. 2006, 8,
3489 – 3492; e) K. Tanaka, T. Suda, K. Noguchi, M. Hirano, J.
Org. Chem. 2007, 72, 2243 – 2246; see also Ref. [11a].
[13] For pioneering work on the synthesis of biaryl compounds
through alkyne cyclotrimerization, see: Y. Sato, K. Ohashi, M.
Mori, Tetrahedron Lett. 1999, 40, 5231 – 5234.
[a] Yield of the isolated product. [b] 20% of 2 recovered. [c] 27% of 2
recovered. [d] 66% of 2 recovered.
and bisphosphorus ligands may also be possible in view of the
ready access to substrates, mild reaction conditions, opera-
tional simplicity, and high catalytic activities.
Experimental Section
Representative procedure (Table 1, entry 2): Under an Ar atmos-
phere, (R)-H8-binap (6.3 mg, 0.010 mmol) and [Rh(cod)2]BF4 (4.1 mg,
0.010 mmol) were dissolved in CH2Cl2 (1.0 mL) in a Schlenk tube, and
the solution was stirred at room temperature for 5 min. H2 (1 atm)
was introduced into the resulting solution, which was then stirred at
room temperature for 1 h. The mixture was concentrated to dryness,
the residue was redissolved in CH2Cl2 (0.4 mL), and a solution of 2a
(318.3 mg, 1.00 mmol) in CH2Cl2 (1.6 mL) was added. A solution of
the diyne 1a (183.2 mg, 1.50 mmol) in CH2Cl2 (3.0 mL) was then
added dropwise over 20 min at room temperature, and the resulting
mixture was stirred at room temperature for 1 h, then concentrated
and purified by column chromatography on silica gel (hexane/EtOAc/
Et3N 3:1:1) to furnish (À)-3aa (439.6 mg, 1.00 mmol, > 99% yield,
97% ee) as a colorless solid. M.p. 77.3–78.98C; [a]2D5 = À22.88 (c =
1
20.8, CHCl3, 97% ee); H NMR (CDCl3, 300 MHz): d = 7.87 (d, J =
8.7 Hz, 1H), 7.82–7.74 (m, 1H), 7.35 (d, J = 9.3 Hz, 1H), 7.30–7.21 (m,
2H), 7.11–7.04 (m, 1H), 5.24 (s, 2H), 5.18 (s, 2H), 3.84 (s, 3H), 3.83–
3.55 (m, 3H), 3.40–3.30 (m, 1H), 2.60 (s, 3H), 1.62 (s, 3H), 1.02 (t, J =
7.2 Hz, 3H), 0.85 ppm (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3,
75 MHz): d = 153.1, 141.8, 141.7, 140.3, 140.1, 138.7, 138.5, 133.7,
133.5, 133.4, 128.8, 128.63, 128.55, 128.45, 128.4, 127.5, 126.0, 125.8,
124.2, 123.32, 123.27, 122.8, 112.5, 74.20, 74.17, 74.1, 60.73, 60.71,
60.66, 60.62, 55.8, 18.81, 18.76, 16.1, 15.8, 15.7, 15.6, 15.5 ppm;
31P NMR (CDCl3, 121 MHz): d = 18.6 ppm; IR (neat): n˜ = 3300, 2900,
1580, 1210, 1020, 960 cmÀ1; HRMS (FAB): m/z calcd for C25H30O5P:
441.1831 [M+H]+; found: 441.1786; HPLC: chiralpak AD-H, hexane/
2-PrOH 90:10, 1.0 mLminÀ1, tR: 8.56 min (major isomer) and 12.9 min
(minor isomer).
Received: January 6, 2007
Published online: April 19, 2007
[14] For asymmetric [2+2+2] cycloadditions developed by other
research groups for the synthesis of axially chiral biaryl
Angew. Chem. Int. Ed. 2007, 46, 3951 –3954
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3953