Scheme 1
this subject has been restricted to only two examples recently
event, simultaneous establishment of relative and absolute
stereochemistries of the target amino acid derivatives could
be achieved. In this Letter, we wish to disclose the realization
of this phase-transfer-catalyzed alkylation involving impres-
sive kinetic resolution, together with the highly selective
inversion of R-stereogenic carbon centers by a simple
deprotonation-protonation sequence, thereby providing a
versatile chemical process for the synthesis of all the
stereoisomers of â-methyl-R-amino acid derivatives (Scheme
1).
Asymmetric alkylation of glycinate Schiff base 3 using
chiral phase-transfer catalysts has been intensively studied
and rapidly developed into a powerful method for the
synthesis of optically active R-amino acids.8 Surprisingly,
however, the stereochemistry of the alkylation of 3 with
chiral electrophiles (alkyl halides), particularly those having
an asymmetric center on the electrophilic carbon itself, has
never been addressed.9 Our initial examination was therefore
focused on the search for the appropriate phase-transfer
conditions including catalyst structure to attain sufficient
reactivity and selectivity in the reaction of 3 with com-
mercially available, racemic 1-bromo-1-phenylethane (2a).
Attempted treatment of 3 with 2a (2 equiv) and (S,S)-1a,10
a promising catalyst for the asymmetric alkylation of 3 with
simple achiral alkyl halides, in toluene-50% KOH aqueous
reported. In 1995, Burk and co-workers pioneered the
enantioselective hydrogenation of â,â-disubstituted didehy-
droamino acids utilizing rhodium chiral bisphosphine com-
plexes,5 and Turner and co-workers elegantly combined it
with an amino acid oxidase (AAO) stereoinversion proce-
dure, offering a chemobiocatalytic method for the synthesis
of the possible four stereoisomers of â-methyl-â-arylalanine
analogues.6 However, this strategy based on the transition-
metal-catalyzed asymmetric hydrogenation inevitably re-
quires the stereoselective, multistep preparation of (E)- and
(Z)-isomers of the starting didehydroamino esters. In this
context, we have been interested in the possibility of direct
construction of â-alkyl-R-amino acid derivatives from a
glycine unit through the alkylation with readily available
racemic secondary alkyl halides under phase-transfer condi-
tions in the presence of chiral quaternary ammonium salts
of type 1 as catalyst.7 If the chiral ammonium cation of
appropriately modified 1 could precisely discriminate not
only the enantiofaces of the prochiral enolate but also the
central chirality of the halides during this bond-forming
(2) (a) Waisvisz, J. M.; van der Hoeven, M. G.; te Nijenhuis, B. J. Am.
Chem. Soc. 1957, 79, 4524. (b) Zlatopolskiy, B. D.; de Meijere, A. Chem.-
Eur. J. 2004, 10, 4718. (c) Saito, T.; Iwata, N.; Tsubuki, S.; Takaki, Y.;
Takano, J.; Huang, S.-M.; Suemoto, T.; Higuchi, M.; Saido, T. C. Nat.
Med. 2005, 11, 434.
(3) (a) Dharanipragada, R.; VanHulle, K.; Bannister, A.; Bear, S.;
Kennedy, L.; Hruby, V. J. Tetrahedron 1992, 48, 4733. (b) Pasto´, M.;
Moyano, A.; Perica`s, M. A.; Riera, A. J. Org. Chem. 1997, 62, 8425. (c)
Medina, E.; Moyano, A.; Perica`s, M. A.; Riera, A. J. Org. Chem. 1998,
63, 8574. (d) Schabbert, S.; Pierschbacher, M. D.; Mattern, R.-H.; Goodman,
M. Bioorg. Med. Chem. 2002, 10, 3331. (e) O’Donnell, M. J.; Cooper, J.
T.; Mader, M. M. J. Am. Chem. Soc. 2003, 125, 2370.
(4) Enzymatic process: (a) Ogawa, J.; Ryono, A.; Xie, S.-X.; Vohra, R.
M.; Indrati, R.; Miyakawa, H.; Ueno, T.; Ikenaka, Y.; Nanba, H.; Takahashi,
S.; Shimizu, S. Appl. Microbiol. Biotechnol. 1999, 52, 797. Recrystallization
of diastereomeric salts: (b) Erchegyi, J.; Penke, B.; Simon, L.; Michaelson,
S.; Wenger, S.; Waser, B.; Cescato, R.; Schaer, J.-C.; Reubi, J. C.; Rivier,
J. J. Med. Chem. 2003, 46, 5587.
(7) (a) Maruoka, K.; Ooi, T.; Kano, T. Chem. Commun. 2007, 1487.
For recent reviews on asymmetric phase-transfer catalysis, see: (b)
Albanese, D. Mini-ReV. Org. Chem. 2006, 3, 195. (c) Vachon, J.; Lacour,
J. Chimia 2006, 60, 266. (d) Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed.
2007, 46, 4222.
(8) For recent reviews, see: (a) Maruoka, K.; Ooi, T. Chem. ReV. 2003,
103, 3013. (b) O’Donnell, M. J. Acc. Chem. Res. 2004, 37, 506. (c) Lygo,
B.; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518. See also ref 7.
(9) The stereochemical outcome of the alkylation of 3 with â-chiral alkyl
halides has been investigated. See: (a) Le´pine, R.; Carbonnelle, A.-C.; Zhu,
J. Synlett 2003, 1455. (b) Armstrong, A.; Scutt, J. N. Org. Lett. 2003, 5,
2331. (c) Ooi, T.; Takeuchi, M.; Kato, D.; Uematsu, Y.; Tayama, E.; Sakai,
D.; Maruoka, K. J. Am. Chem. Soc. 2005, 127, 5073.
(5) Burk, M. J.; Gross, M. F.; Martinez, J. P. J. Am. Chem. Soc. 1995,
117, 9375.
(6) Roff, G. J.; Lloyd, R. C.; Turner, N. J. J. Am. Chem. Soc. 2004, 126,
4098.
(10) (a) Ooi, T.; Takeuchi, M.; Kameda, M.; Maruoka, K. J. Am. Chem.
Soc. 2000, 122, 5228. (b) Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem.
Soc. 2003, 125, 5139.
3946
Org. Lett., Vol. 9, No. 20, 2007