2230
A. Ganta, T. S. Snowden
LETTER
(9) (a) Srebnik, M.; Mechoulam, R.; Yona, I. J. Chem. Soc.,
Perkin Trans. 1 1987, 1423. (b) Doad, G. J. S.; Barltrop, J.
A.; Petty, C. M.; Owen, T. C. Tetrahedron Lett. 1989, 30,
1597. (c) Thomsen, I.; Torssell, K. B. G. Acta Chem. Scand.
1991, 45, 539. (d) Barluenga, J.; Gonzàlez, J. M.; García-
Martín, M. A.; Campos, P. J.; Asensio, G. J. Org. Chem.
1993, 58, 2058. (e) Yonezawa, S.; Komurasaki, T.; Kawada,
K.; Tsuri, T.; Fuji, M.; Kugimiya, A.; Haga, N.; Mitsumori,
S.; Inagaki, M.; Nakatani, T.; Tamura, Y.; Takechi, S.;
Taishi, T.; Ohtani, M. J. Org. Chem. 1998, 63, 5831.
(f) Yang, S. G.; Kim, Y. H. Tetrahedron Lett. 1999, 40,
6051. (g) Denieul, M. R.; Laursen, B.; Hazell, R.; Skrydstup,
T. J. Org. Chem. 2000, 65, 6052. (h) Mukaiyama, T.;
Kitagawa, H.; Matsuo, J. Tetrahedron Lett. 2000, 41, 9383.
(i) Narender, N.; Srinivasu, P.; Kulakarni, S. J.; Raghavan,
K. V. Synth. Commun. 2002, 32, 2319. (j) Jereb, M.; Zupan,
M.; Stavber, S. Chem. Commun. 2004, 2614. (k) Krishna
Mohan, K. V. V.; Narender, N.; Kulkarni, S. J. Tetrahedron
Lett. 2004, 45, 8015. (l) Patil, B. R.; Bhusare, S. R.; Pawar,
R. P.; Vibhute, Y. B. Tetrahedron Lett. 2005, 46, 7179.
(10) Kauch, M.; Hoppe, D. Synthesis 2006, 1578.
(11) (a) Kauch, M.; Hoppe, D. Can. J. Chem. 2001, 79, 1736.
(b) Kauch, M.; Snieckus, V.; Hoppe, D. J. Org. Chem. 2005,
70, 7149.
MHz, CDCl3): d = 7.16 (t, J = 8.2 Hz, 1 H), 6.66 (dt, J = 5.0,
2.0 Hz, 2 H), 6.62 (t, J = 2.0 Hz, 1 H), 4.79 (d, J = 0.7 Hz, 1
H), 3.82 (dt, J = 13.2, 6.4 Hz, 1 H), 3.72 (s, 3 H), 1.16 (d,
J = 6.5 Hz, 6 H). 13C NMR (125 MHz, CDCl3): d = 160.3,
153.5, 152.0, 129.5, 113.8, 111.1, 107.5, 55.3, 43.4, 22.8.
HRMS (EI): m/z [M]+ calcd for C11H15NO3: 209.1052;
found: 209.1056.
(18) Compound 3: white solid, mp 105–106 °C. IR (neat): 3343
(m), 1739 (s), 1608 (m), 739 (m) cm–1. 1H NMR (500 MHz,
CDCl3): d = 6.96 (d, J = 8.0 Hz, 1 H), 6.75 (s, 1 H), 6.71 (d,
J = 8.0 Hz, 1 H), 4.97 (d, J = 4.0 Hz, 1 H,), 3.86 (td, J = 6.7,
13.1 Hz, 1 H), 3.81 (s, 3 H), 2.32 (s, 3 H), 1.20 (d, J = 6.5 Hz,
6 H). 13C NMR (125 MHz, CDCl3): d = 153.5, 151.1, 137.6,
136.0, 122.7, 120.9, 113.1, 55.7, 43.3, 22.7, 21.2. HRMS
(EI): m/z [M]+ calcd for C12H17NO3: 223.1208; found:
223.1210.
(19) Compound 5: white solid, mp 151–152 °C. IR (neat): 3391
(m), 1738 (s), 1502 (s), 847 (w), 746 (s) cm–1. 1H NMR (500
MHz, CDCl3): d = 7.55 (d, J = 7.5 Hz, 4 H), 7.42 (t, J = 7.4
Hz, 2 H), 7.33 (t, J = 7.1 Hz, 1 H), 7.20 (d, J = 8.0 Hz, 2 H),
4.89 (d, J = 4.9 Hz, 1 H), 3.91 (dd, J = 12.8, 6.3 Hz, 1 H),
1.24 (d, J = 6.3 Hz, 6 H). 13C NMR (125 MHz, CDCl3):
d = 153.6, 150.4, 140.5, 138.3, 128.7, 127.9, 127.1, 127.0,
121.8, 43.4, 22.8. HRMS (EI): m/z [M]+ calcd for
(12) MacPhee, J. A.; Panaye, A.; Dubois, J. E. Tetrahedron 1978,
34, 3553.
(13) Sloan, C. P.; Cuevas, J. C.; Quesnelle, C.; Snieckus, V.
Tetrahedron Lett. 1988, 29, 4685.
C16H17NO2: 255.1259; found: 255.1259.
(20) Patonay, T.; Patonay-Peli, E.; Mogyorodi, F. Synth.
Commun. 1990, 20, 2865.
(21) Compound 7: white solid, mp 123–124 °C. IR (neat): 3326
(br), 1739 (s), 1495 (s), 845 (s), 746 (s) cm–1. 1H NMR (500
MHz, CDCl3): d = 7.04 (td, J = 8.6, 16.7 Hz, 4 H), 4.98 (s, 1
H), 3.87 (dd, J = 6.5, 13.1 Hz, 1 H), 1.20 (d, J = 6.4 Hz, 6 H).
13C NMR (125 MHz, CDCl3): d = 159.7 [d, J(CF) = 243.2
Hz], 153.6, 146.8 [d, J(CF) = 2.6 Hz], 122.9 [d, J(CF) = 8.4
Hz], 115.6 [d, J(CF) = 23.4 Hz], 43.4, 22.7. HRMS (EI):
m/z [M]+ calcd for C10H12FNO2: 197.0852; found: 197.0853.
(22) Compound 8: white solid, mp 85–86 °C. IR (neat): 3433 (m),
1601 (s), 1508 (m), 748 (s) cm–1. 1H NMR (500 MHz,
CDCl3): d = 7.29 (dd, J = 8.3, 15.3 Hz, 1 H), 6.91 (ddd,
J = 6.0, 8.1, 6.6 Hz, 3 H), 4.84 (d, J = 0.9 Hz, 1 H), 3.89 (qd,
J = 6.6, 13.4 Hz, 1 H), 1.24 (d, J = 6.6 Hz, 6 H). 13C NMR
(125 MHz, CDCl3): d = 162.7 [d, J(CF) = 246.6 Hz], 153.0,
151.9 [d, J(CF) = 11.0 Hz], 129.8 [d, J(CF) = 9.4 Hz], 117.2
[d, J(CF) = 2.0 Hz], 112.0 [d, J(CF) = 21.1 Hz], 109.5 [d,
J(CF) = 24.3 Hz], 43.4, 22.7. HRMS (EI): m/z [M]+ calcd for
C10H12FNO2: 197.0852; found: 197.0850.
(23) Compound 9: white solid, mp 119–120 °C. IR (neat): 3316
(br), 1739 (s), 1535 (s), 814 (m), 700 (s) cm–1. 1H NMR (500
MHz, CDCl3): d = 7.36 (m, 3 H), 7.25 (d, J = 7.0 Hz, 1 H),
4.93 (d, J = 3.9 Hz, 1 H), 3.81 (qd, J = 13.5, 6.6 Hz, 1 H),
1.15 (d, J = 6.6 Hz, 6 H). 13C NMR (125 MHz, CDCl3):
d = 153.0, 151.1, 131.6 [q, J(CF) = 32.8 Hz], 129.6, 125.1,
125.1, 123.6 [q, J(CF) = 272.3 Hz], 121.7 [d, J(CF) = 3.7
Hz], 118.7 [dd, J(CF) = 3.6 Hz, J = 7.4 Hz], 43.5, 22.6.
HRMS (EI): m/z [M]+ calcd for C11H12F3NO2: 247.0820;
found: 247.0824.
(14) Sanz, R.; Castroviejo, M. P.; Fernández, Y.; Fañanás, F. J.
J. Org. Chem. 2005, 70, 6548.
(15) General Procedure for the Preparation of 2-Iodophenols
11–20
To a solution of the carbamate (2.5 mmol) dissolved in dry
Et2O (25 mL) under argon was added TMEDA (1.1 equiv,
2.75 mmol) at 0 °C. Then TMSOTf (1.1 equiv, 2.75 mmol)
was slowly added to the solution and the reaction mixture
was allowed to warm to r.t. over a period of 30 min. After
cooling the solution to –78 °C, TMEDA (2.0 equiv, 5.0
mmol) was added followed by the dropwise addition of n-
BuLi or t-BuLi (2.0–2.5 equiv, 5.0–6.2 mmol). The reaction
mixture was stirred for 1 h and was then treated with I2 (1.0
equiv, 2.5 mmol) dissolved in THF (3 mL). After reacting
for 2 h, EtOH (0.25 mL) was added and the solvent was
removed by rotary evaporation. The resultant residue was
dissolved in EtOH (25 mL) and treated with 5 mL of aq 2 N
NaOH (4 equiv, 10 mmol). The reaction proceeded for 2 h,
after which the pH was adjusted to 6–8 with 2 N HCl. The
aqueous layer was extracted with Et2O (3 ꢀ 25 mL) and the
combined organic layers were washed with a 1 M solution of
Na2S2O3 (25 mL), then dried and filtered. Upon concen-
tration, the resulting residue was purified using flash
chromatography (hexane–EtOAc, 95:5 to 9:1) affording the
desired 2-iodophenol.
(16) General Procedure for the Preparation of 2-Iodophenyl
Triflates 21–30
To a –78 °C solution of 2-iodophenol (1.0 mmol) in CH2Cl2
(3 mL) was added anhydrous i-Pr2NEt (1.25 mmol) and
Tf2O (1.25 mmol). After 10 min, the cooling bath was
removed and the reaction mixture was allowed to warm to
r.t. The reaction was quenched with H2O (5 mL) after 1–2 h,
and the aqueous phase was extracted with Et2O (3 ꢀ 5 mL).
The combined organic layers were dried and concentrated.
The crude material was then purified by flash chromatog-
raphy (100% hexane to hexane–EtOAc, 98:2) or recrystal-
lized from hexane to afford the desired 2-iodophenyl triflate.
(17) Compound 2: white solid, mp 54–55 °C. IR (neat): 3441 (m),
1734 (s), 1507 (m), 908 (m), 732 (m) cm–1. 1H NMR (500
(24) Compound 10: white solid, mp 88–89 °C. IR (neat): 3339
(br), 1743 (s), 1490 (s), 804 (m), 743 (s) cm–1. 1H NMR (500
MHz, CDCl3): d = 7.46 (m, 2 H), 7.41 (s, 1 H), 7.36 (d,
J = 7.3 Hz, 1 H), 4.89 (d, J = 4.6 Hz, 1 H), 3.90 (qd, J = 6.7,
13.4 Hz, 1 H), 1.25 (d, J = 6.5 Hz, 6 H). 13C NMR (125 MHz,
CDCl3): d = 153.05, 151.1, 131.6 [q, J(CF) = 32.7 Hz],
129.6, 125.1, 123.6 [q, J(CF) = 272.3 Hz], 121.79 [d,
J(CF) = 3.6 Hz], 118.7 [dd, J(CF) = 7.3, 3.5 Hz], 43.5, 22.6.
HRMS (EI): m/z [M]+ calcd for C11H12F3NO2: 247.0820;
found: 247.0822.
(25) Weeratunga, G.; Jaworskasobiesiak, A.; Horne, S.; Rodrigo,
R. Can. J. Chem. 1987, 65, 2019.
Synlett 2007, No. 14, 2227–2231 © Thieme Stuttgart · New York