10.1002/chem.201805490
Chemistry - A European Journal
COMMUNICATION
The authors declare no conflict of interest.
radical D to give product 4 with concomitant formation of iodanyl
radical E. Transient radical E is then reduced by the longer lived
[26]
radical anion (4CzlPN)
to give ortho-iodobenzoate F and
Keywords: alkene amidoalkynylation • radical cascades •
amidyl radical • photoredox catalysis • transition-metal-free
4CzlPN, thereby closing the catalytic cycle. Two additional
experiments were conducted to support the suggested
mechanism (for details, see SI). Stern-Volmer quenching
experiments of 4CzlPN with the sodium salt of 1c supported
formation of carboxyl radical B via SET oxidation of A with excited
4CzlPN. Moreover, cyclic voltammetry of A (tetrabutylammonium
salt) revealed an oxidation peak at +1.30 V vs. SCE in acetonitrile,
documenting the feasibility of the SET oxidation of A by photo-
excited 4-CzlPN (+1.35 V vs. SCE in MeCN).
[1]
For selected reviews, see: a) R. K. Dhungana, S. KC, P. Basnet, R. Giri,
Chem. Rec. 2018, 18, 1314; b) X.-W. Lan, N.-X. Wang, Y. Xing, Eur. J.
Org. Chem. 2017, 5821; c) M. P. Plesniak, H.-M. Huang, D. J. Procter,
Nat. Rev. Chem. 2017, 1, 0077; d) T. Pintauer, K. Matyjaszewski, Chem.
Soc. Rev. 2008, 37, 1087; e) E. Godineau, Y. Landais, Chem. Eur. J.
2009, 15, 3044; f) J. Iqbal, B. Bhatia, N. K. Nayyar, Chem. Rev. 1994, 94,
519.
[2]
a) X. Bao, T. Yokoe, T. M. Ha, Q. Wang, J. Zhu, Nat. Commun. 2018,
S. Luo, J.-H. Li, Nat. Commun. 2017, 8, 14720; c) B. Qian, S. Chen, T.
Wang, X. Zhang, H. Bao, J. Am. Chem. Soc. 2017, 139, 13076; d) X.
Geng, F. Lin, X. Wang, N. Jiao, Org. Lett. 2017, 19, 4738; e) D. Wang,
L. Wu, F. Wang, X. Wan, P. Chen, Z. Lin, G. Liu, J. Am. Chem. Soc.
2017, 139, 6811; f) L. Xu, X.-Q. Mou, Z.-M. Chen, S.-H. Wang, Chem.
Commun. 2014, 50, 10676; g) F. Wang, X. Qi, Z. Liang, P. Chen, G. Liu,
Angew. Chem. Int. Ed. 2014, 53, 1881, Angew. Chem. 2014, 126, 1912;
h) G. Dagousset, A. Carboni, E. Magnier, G. Masson, Org. Lett. 2014,
16, 4340; i) D. P. Hari, T. Hering, B. König, Angew. Chem. Int. Ed. 2014,
53, 725, Angew. Chem. 2014, 126, 743; j) H. Zhang, W. Pu, T. Xiong, Y.
Li, X. Zhou, K. Sun, Q. Liu, Q. Zhang, Angew. Chem. Int. Ed. 2013, 52,
2529, Angew. Chem. 2013, 125, 2589; k) K. Matcha, R. Narayan, A. P.
Antonchick, Angew. Chem. Int. Ed. 2013, 52, 7985, Angew. Chem. 2013,
125, 8143.
[3]
[4]
[5]
X.-D. An, Y.-Y. Jiao, H. Zhang, Y. Gao, S. Yu, Org. Lett. 2018, 20, 401.
X.-D. An, S. Yu, Synthesis 2018, 50, 3387.
a) A. Lerchen, T. Knecht, C. G. Daniliuc, F. Glorius, Angew. Chem. Int.
Ed. 2016, 55, 15166, Angew. Chem. 2016, 128, 15391; b) Z. Hu, X. Tong,
G. Liu, Org. Lett. 2016, 18, 1702; c) T. Piou, T. Rovis, Nature
2015, 527, 86; Also see ref. 2b.
Scheme 3. Suggested mechanism.
[6]
[7]
[8]
J. Cheng, X. Qi, M. Li, P. Chen, G. Liu, J. Am. Chem. Soc. 2015, 137,
2480.
In summary, we have established a practical method for 1,2-
amidoalkynylation of various unactivated alkenes. By using a
readily available Troc-protected α-aminoxy acid as the amidyl
radical precursor and EBX-type reagents as the alkyl radical
acceptors, various unactivated alkenes including mono-, di- and
tri-substituted alkenes, vinyl ethers, vinyl esters and vinyl amides
are efficiently 1,2-difunctionalized providing diverse -alkynylated
Troc-amides. The transition-metal-free process proceeds under
mild conditions and a wide range of functional groups are
tolerated. The ubiquity of amines and the importance of the
alkynyl moiety in synthetic chemistry render this transformation
highly valuable for medicinal and agrochemical research.
S. N. Gockel, T. L. Buchanan, K. L. Hull, J. Am. Chem. Soc. 2018, 140,
58.
a) G. Lapointe, K. Schenk, P. Renaud, Chem. Eur. J. 2011, 17, 3207; b)
K. Weidner, A. Giroult, P. Panchaud, P. Renaud, J. Am. Chem. Soc.
2010, 132, 17511; Also see ref. 2d and 2h.
[9]
S. Kindt, K. Wicht, M. R. Heinrich, Org. Lett. 2015, 17, 6122.
[10] Z. Liu, Z.-Q. Liu, Org. Lett. 2017, 19, 5649.
[11] Y. Zhang, H. Liu, L. Tang, H.-J. Tang, L. Wang, C. Zhu, C. Feng, J. Am.
Chem. Soc. 2018, 140, 10695.
[12] Z. Liu, Y. Wang, Z. Wang, T. Zeng, P. Liu, K. M. Engle, J. Am. Chem.
Soc. 2017, 139, 11261.
[13] a) F. Diederich, P. J. Stang, R. R. Tykwinski, Acetylene Chemistry:
Chemistry, Biology and Material Science (Eds.: F. Diederich, P. J. Stang,
R. R. Tykwinski), Wiley-VCH, 2005; b) P. Thirumurugan, D. Matosiuk, K.
Jozwiak, Chem. Rev. 2013, 113, 4905; c) J. C. Jewetta, C. R. Bertozzi,
Chem. Soc. Rev. 2010, 39, 1272; d) H. C. Kolb, M. G. Finn, K. B.
Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004; Angew. Chem. 2001,
113, 2056.
Acknowledgements
This work was supported by the Alexander von Humboldt
Foundation (postdoctoral fellowship to H. J.). We thank Dr. Ying
Cheng (WWU Münster) and Dr. Anup Bhunia (WWU Münster) for
providing some alkenes. We also thank Max Lübbesmeyer (WWU
Münster) for the measurement of cyclic voltammetry and Dr. Jiajia
Ma (WWU Münster) for conducting emission quenching
experiments.
[14] a) K. Shen, Q. Wang, Chem. Sci. 2017, 8, 8265; b) S. Nicolai, R. Sedigh-
Zadeh, J. Waser, J. Org. Chem. 2013, 78, 3783; c) S. Nicolai, J. Waser,
Org. Lett. 2011, 13, 6324; d) S. Nicolai, C. Piemontesi, J. Waser, Angew.
Chem. Int. Ed. 2011, 50, 4680; Angew. Chem. 2011, 123, 4776.
[15] One specific example reported by the Engle group shows Pd-catalyzed
1,2-imidoalkynylation of a 1-butenoic acid derivative by using a cleavable
bidentate directing group, see ref. 12.
[16] For our pioneering work, see: a) H. Jiang, A. Studer, Angew. Chem. Int.
Ed. 2018, 57,10707, Angew. Chem. 2018, 130,10867; Also see: b) S. P.
Morcillo, E. D. Dauncey, J. H. Kim, J. J. Douglas, N. S. Sheikh, D. Leonori,
Angew. Chem. Int. Ed. 2018, 57, 12945, Angew. Chem. 2018, 130,13127.
Conflict of Interest
This article is protected by copyright. All rights reserved.