Published on Web 01/25/2003
A New Horner-Wadsworth-Emmons Type Coupling Reaction
between Nonstabilized â-Hydroxy Phosphonates and
Aldehydes or Ketones
John F. Reichwein and Brian L. Pagenkopf*
Contribution from the Department of Chemistry and Biochemistry, The UniVersity of Texas at
Austin, Austin, Texas 78712
Abstract: Treatment of nonstabilized â-hydroxy phosphonic acid mono methyl esters with diisopropyl
carbodiimide at ambient temperature leads to clean stereospecific elimination. The phosphonic acid mono
alkyl esters are accessible by the selective partial saponification of dimethyl or diethyl alkyl phosphonates
with NaOH or MgBr2. Isolated yields over both hydrolysis and elimination steps average 55-75%.
Scheme 1
Introduction
The Wittig,1,2 Horner,3,4 and Wadsworth-Emmons5,6 reac-
tions are classic methods for joining two complex molecular
fragments through relatively simple functional groups, and these
reliable olefin-forming reactions are well-accepted transforma-
tions in both academia and industry (Scheme 1).7 The synthetic
power inherent with these kinds of coupling and homologation
reactions has spurred research into optimizing, modifying, or
supplanting8 these methods with others that operate under
different reaction conditions,9 can be prepared from alternative
starting materials,10 or that enhance stereochemical control.11,12
The dialkyl phosphonates of the Wadsworth-Emmons reac-
tion can be prepared by Arbuzov, Michaelis-Becker,13,14 or
other methods,14 and the alkylation of R-lithio phosphonates
with aldehydes is well known. However, a carbanion-stabilizing
group in the â-position is necessary for elimination and olefin
formation, without which addition to aldehydes gives stable
â-hydroxyphosphonates.6,7,15 The elimination of nonstabilized
â-hydroxy phosphonates to olefins has long been recognized
as a difficult transformation. In pioneering studies on the
formation of olefins from nonstabilized â-hydroxy phosphonates
derived from benzophenone, Corey and Kwiatkowski reported
that the optimal yield of 1,1-diphenylethylene was at best 30%,
and benzophenone, unsaturated phosphonate, and acidic materi-
als were also formed.16 To overcome these difficulties, Corey
et al. ingeniously developed phosphonic bisamides17 and thio-
phosphonates16 as alternative coupling reagents.18 During the
intervening decades, a general protocol for the elimination of
nonstabilized â-hydroxyphosphonates has not been advanced.
In this paper, we describe a novel method for the utilization of
nonstabilized â-hydroxyphosphonates in Horner-Wadsworth-
(1) Wittig, G.; Geissler, G. Justus Liebigs Ann. Chem. 1953, 580, 44-68.
(2) For reviews, see: (a) Maryanoff, B. E.; Reitz, A. B. Chem. ReV. 1989, 89,
863-927. (b) Maercker, A. Org. React. 1965, 14, 270-490.
(3) Horner, L.; Hoffmann, H.; Wipel, H. C.; Klahre, G. Chem. Ber. 1959, 92,
2499-2505.
(4) For reviews, see: (a) Clayden, J.; Warren, S. Angew. Chem., Int. Ed. Engl.
1996, 35, 241-270. (b) Buss, A. D.; Warren, S. J. Chem. Soc., Perkin
Trans. 1 1985, 2307-2325.
(5) Wadsworth, W. S., Jr.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733-
1738.
(6) Boutagy, J.; Thomas, R. Chem. ReV. 1974, 74, 87-99. Wadsworth, W.
A., Jr. Org. React. 1977, 25, 73-253.
(7) Nicalaou, K. C.; Harter, M. W.; Gunzner, J. L.; Nadin, A. Liebigs Ann.
Recl. 1997, 1283-1301.
(8) (a) Chatterjee, A. K.; Grubbs, R. H. Angew. Chem., Int. Ed. 2002, 41, 3171-
3174. (b) Pederson, R. L.; Fellows, I. M.; Ung, T. A.; Ishihara, H.; Hajela,
S. P. AdV. Synth. Catal. 2002, 344, 728-735.
(9) Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune,
S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1994, 25, 2183-2186.
(10) For examples with diazoesters, see: (a) Lu, X.; Fang, H.; Ni, Z. J.
Organomet. Chem. 1989, 373, 77-84. (b) Herrmann, W. A.; Wang, M.
Angew. Chem., Int. Ed. Engl. 1991, 30, 1641-1643. (c) Zhou, Z.; Huang,
Y.; Shi, L. Tetrahedron 1993, 49, 6821-6830. (d) Herrmann, W. A.;
Roesky, P. W.; Wang, M.; Scherer, W. Organometallics 1994, 13, 4531-
4535. (e) Ledford, B. E.; Carreira, E. M. Tetrahedron Lett. 1997, 38, 8125-
8128. (f) Lebel, H.; Paquet, V.; Proulx, C. Angew. Chem., Int. Ed. 2001,
40, 2887-2890.
(15) Kelly, S. E. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon Press: Oxford, 1991; Vol. 1, Chapter 3.1, pp 729-
817.
(16) Corey, E. J.; Kwiatkowski, G. T. J. Am. Chem. Soc. 1966, 88, 5654-
5656.
(17) (a) Corey, E. J.; Kwiatkowski, G. T. J. Am. Chem. Soc. 1966, 88, 5652-
5653. (b) Corey, E. J.; Kwiatkowski, G. T. J. Am. Chem. Soc. 1966, 88,
5653-5654. (c) Corey, E. J.; Kwiatkowski, G. T. J. Am. Chem. Soc. 1968,
90, 6816-6821. (d) Corey, E. J.; Cane, D. E. J. Org. Chem. 1969, 34,
3053-3057.
(11) Still, W. C.; Gennari, C. Tetrahedron Lett. 1993, 24, 4405-4408.
(12) For examples with phosphonates, see: Chemler, S. R.; Coffey, D. S.; Roush,
W. R. Tetrahedron Lett. 1999, 40, 1269-1272.
(13) Bhattacharya, A. K.; Thyagarajan, G. Chem. ReV. 1981, 81, 415-430.
(14) Kosolapoff, G. M. Org. React. 1951, 6, 273-338.
(18) Rein, T.; Reiser, O. Acta Chem. Scand. 1996, 50, 369-379.
9
10.1021/ja027658s CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 1821-1824
1821