Catalysis Science & Technology
Paper
zeolite catalysts can not only increase the octane number of
gasoline but can also produce heavy aromatics to improve
the diesel quality, while the key properties and catalytic
performance are determined by the coordination
environments of Al species in ZSM-5 zeolites. In the present
work, ZSM-5 zeolites with different Al positions and
proximities were obtained by tuning the synthesis conditions.
Their phase, morphology, textural properties, acidity, Al
siting, and catalytic performance in 1-octene aromatization
were well investigated. Although all zeolites exhibit high
crystallinity, uniform morphology, and open textural
properties, an obvious difference in the AlF position and
proximity was found via 27Al MAS NMR and UV-vis-DRS of
CoIJII) ions, thus resulting in the different acidities as
determined by NH3-TPD and Py-IR. As a result, the catalytic
performance of the ZSM-5 catalyst in 1-octene aromatization
is found to be strongly related to the AlF positions and
proximity. The product selectivity demonstrated that the
single Al atoms in the ZSM-5 framework are responsible for
the highest activity in the cracking reaction, leading to the
lowest aromatics selectivity. However, the Al pairs in the
framework were more favorable to the formation of
aromatics. In addition, from the distribution of the aromatics
and cracked products, the Al pairs in the channel
intersections of the ZSM-5 zeolite resulted in the
enhancement of the selectivity to heavy aromatics due to the
fewer space restrictions, while the Al pairs in the sinusoidal
and straight channels with severe shape selectivity
suppressed the generation of bigger aromatics. Nevertheless,
the alkylation of benzene with 1-octene provided solid
evidence that heavy aromatics can be formed through both
the alkylation reaction and the aromatization reaction. This
finding here provides useful perspectives on developing
aromatization catalysts for olefin conversion and quality
upgradation of Fischer–Tropsch synthesis products.
5 S. Jongpatiwut, P. Sackamduang, T. Rirksomboon, S.
Osuwan and D. E. Resasco, J. Catal., 2003, 218, 1–11.
6 A. Corma and V. Orchillés, Microporous Mesoporous Mater.,
2000, 35–36, 21–30.
7 S. M. Opalka and T. Zhu, Microporous Mesoporous Mater.,
2016, 222, 256–270.
8 A. H. Janssen, A. J. Koster and K. P. De Jong, J. Phys. Chem.
B, 2002, 106, 11905–11909.
9 K. P. de Jong, J. Zečević, H. Friedrich, P. E. de Jongh, M.
Bulut, S. Van Donk, R. Kenmogne, A. Finiels, V. Hulea and
F. Fajula, Angew. Chem., 2010, 122, 10272–10276.
10 D. Verboekend and J. Pérez-Ramírez, Chem.
2011, 17, 1137–1147.
– Eur. J.,
11 H. Long, X. Wang, W. Sun, G. Xiong and K. Wang, Fuel,
2008, 87, 3660–3663.
12 H. Long, X. Wang and W. Sun, Microporous Mesoporous
Mater., 2009, 119, 18–22.
13 J. Macht, R. T. Carr and E. Iglesia, J. Am. Chem. Soc.,
2009, 131, 6554–6565.
14 J. R. Sohn, S. J. DeCanio, P. O. Fritz and J. H. Lunsford,
J. Phys. Chem., 1986, 90, 4847–4851.
15 E. M. Gallego, C. Li, C. Paris, N. Martín, J. Martínez-
Triguero, M. Boronat, M. Moliner and A. Corma, Chem. –
Eur. J., 2018, 24, 14631–14635.
16 A. B. Pinar, L. Gómez-Hortigüela, L. B. McCusker and J.
Pérez-Pariente, Chem. Mater., 2013, 25, 3654–3661.
17 R. A. Beyerlein, G. B. McVicker, L. N. Yacullo and J. J.
Ziemiak, J. Phys. Chem., 1988, 92, 1967–1970.
18 J. R. Di Iorio and R. Gounder, Chem. Mater., 2016, 28,
2236–2247.
19 T. Liang, J. Chen, Z. Qin, J. Li, P. Wang, S. Wang, G. Wang,
M. Dong, W. Fan and J. Wang, ACS Catal., 2016, 6,
7311–7325.
20 S. Kim, G. Park, M. H. Woo, G. Kwak and S. K. Kim, ACS
Catal., 2019, 9, 2880–2892.
21 T. Yokoi, H. Mochizuki, S. Namba, J. N. Kondo and T.
Tatsumi, J. Phys. Chem. C, 2015, 119, 15303–15315.
22 P. Sazama, J. Dědeček, V. Gábová, B. Wichterlová, G. Spoto
and S. Bordig, J. Catal., 2008, 254, 180–189.
23 A. Janda and A. T. Bell, J. Am. Chem. Soc., 2013, 135,
19193–19207.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
24 J. Dědeček, D. Kaucký, B. Wichterlová and O. Gonsiorová,
Phys. Chem. Chem. Phys., 2002, 4, 5406–5413.
25 J. Dědeček, D. Kaucký and B. Wichterlová, Microporous
Mesoporous Mater., 2000, 35–36, 483–494.
26 L. Guo, X. Bao, Y. Fan, G. Shi, H. Liu and D. Bai, J. Catal.,
2012, 294, 161–171.
The authors are grateful to Synfuels China Co., Ltd. and
Beijing Key Laboratory of Coal to Cleaning Liquid Fuels for
financial support. This project is also supported by the
National Natural Science Foundation of China (No.
21902171).
27 M. Guisnet, P. Ayrault and J. Datka, Pol. J. Chem., 1997, 71,
1455–1461.
References
1 S. Liu, J. Ren, S. Zhu, H. Zhang, E. Lv, J. Xu and Y.-W. Li,
J. Catal., 2015, 330, 485–496.
28 J. Li, S. Liu, H. Zhang, E. Lü, P. Ren and J. Ren, Chin. J.
Catal., 2016, 37, 308–315.
2 G. Henrici-Olivé and S. Olivé, Angew. Chem., Int. Ed. Engl.,
1976, 15, 136–141.
3 M. E. Dry, Appl. Catal., A, 1996, 138, 319–344.
4 X. Su, G. Wang, X. Bai, W. Wu, L. Xiao, Y. Fang and J.
Zhang, Chem. Eng. J., 2016, 293, 365–375.
29 H. Mochizuki, T. Yokoi, H. Imai, R. Watanabe, S. Namba,
J. N. Kondo and T. Tatsumi, Microporous Mesoporous Mater.,
2011, 145, 165–171.
30 Y. Liu, Y. Li and W. Yang, J. Am. Chem. Soc., 2010, 132,
1768–1769.
This journal is © The Royal Society of Chemistry 2019
Catal. Sci. Technol., 2019, 9, 7034–7044 | 7043