Green Chemistry
Communication
8 J. Cook, J. E. Hamlin, A. Nutton and P. M. Maitlis, J. Chem. 31 J. DePasquale, I. Nieto, L. E. Reuther, C. J. Herbst-
Soc., Dalton Trans., 1981, 2342–2352, DOI: 10.1039/
dt9810002342.
9 S. Murahashi, T. Naota, K. Ito, Y. Maeda and H. Taki,
J. Org. Chem., 1987, 52, 4319–4327.
10 A. R. Barnum, Ph. D. Dissertation, Louisiana State
University, 2012.
11 A. M. Tondreau, R. Michalczyk and J. M. Boncella,
Organometallics, 2017, 36, 4179–4183.
12 W.-C. Wen, S. C. Eady and L. T. Thompson, Catal. Today,
2020, 355, 199–204.
13 N. Xiang, P. Xu, N. Ran and T. Ye, RSC Adv., 2017, 7, 38586–
38593.
14 E. Balaraman, E. Khaskin, G. Leitus and D. Milstein, Nat.
Chem., 2013, 5, 122–125.
15 R. E. Rodriguez-Lugo, M. Trincado, M. Vogt, F. Tewes,
G. Santiso-Quinones and H. Grutzmacher, Nat. Chem.,
2013, 5, 342–347.
Gervasoni, J. J. Paul, V. Mochalin, M. Zeller, C. M. Thomas,
A. W. Addison and E. T. Papish, Inorg. Chem., 2013, 52,
9175–9183.
32 The reported boiling point of a 70 : 30 water : 1,4-dioxane
azeotrope is 88.2 °C at atmospheric pressure (E. R. Smith
and M. Wojciechowski, Journal of Research of the National
Bureau of Standards, 1937, 18, 461–465). In a small volume
(20 mL) sealed system the headspace pressure exceeds
atmospheric pressure due to vapor pressure and the dihy-
drogen produced by the AWS, allowing the temperature of
the solution to exceed 88.2 °C.
33 Papish and Brewster recently reported that a [(Cp*)Ir(6,6′-
dihydroxy-2,2′-bipyridine)]2+ complex is capable of decarbo-
nylating benzoic acid (ref. 20). No evidence of decarbonyla-
tion is observed when complex 3 is used with benzaldehyde
as substrate for the AWS reaction.
34 B. Saha and M. M. Abu-Omar, Green Chem., 2014, 16, 24–
38.
16 J.-H. Choi, L. E. Heim, M. Ahrens and M. H. G. Prechtl,
Dalton Trans., 2014, 43, 17248–17254.
35 A. A. Rosatella, S. P. Simeonov, R. F. M. Frade and
C. A. M. Afonso, Green Chem., 2011, 13, 754–793.
36 Control reactions without Ru, showed that an aqueous
solution of HMF, when heated to 95 °C for 20 h, resulted in
a dark brown solution, while a 50 : 50 water : 1,4-dioxane
mixture resulted in no color change.
17 K.-i. Fujita, R. Tamura, Y. Tanaka, M. Yoshida, M. Onoda
and R. Yamaguchi, ACS Catal., 2017, 7, 7226–7230.
18 A. Sarbajna, I. Dutta, P. Daw, S. Dinda, S. M. W. Rahaman,
A. Sarkar and J. K. Bera, ACS Catal., 2017, 7, 2786–2790.
19 R. Yamaguchi, D. Kobayashi, M. Shimizu and K.-i. Fujita,
J. Organomet. Chem., 2017, 843, 14–19.
37 T. Ikariya and A. J. Blacker, Acc. Chem. Res., 2007, 40, 1300–
1308.
20 W. Yao, A. R. DeRegnaucourt, E. D. Shrewsbury,
K. H. Loadholt, W. Silprakob, F. Qu, T. P. Brewster and 38 R. Noyori, Angew. Chem., Int. Ed., 2002, 41, 2008–2022.
E. T. Papish, Organometallics, 2020, 39, 3656–3662.
21 T. P. Brewster, W. C. Ou, J. C. Tran, K. I. Goldberg,
S. K. Hanson, T. R. Cundari and D. M. Heinekey, ACS
Catal., 2014, 4, 3034–3038.
22 T. P. Brewster, J. M. Goldberg, J. C. Tran, D. M. Heinekey
and K. I. Goldberg, ACS Catal., 2016, 6, 6302–6305.
39 In a mass balance control experiment with just benz-
aldehyde, buffer, and solvent, only 90% of the starting
material was detected after workup.
40 In preliminary studies with acetaldehyde, it was noted that
acid selectivity did not change greatly with reaction temp-
erature (Fig. S11 and 12†).
23 C. L. Pitman, K. R. Brereton and A. J. Miller, J. Am. Chem. 41 T. Zweifel, J. V. Naubron and H. Grutzmacher, Angew.
Soc., 2016, 138, 2252–2260. Chem., Int. Ed., 2009, 48, 559–563.
24 Temperatures listed in this communication are that of a 42 W. C. Ou and T. R. Cundari, ACS Catal., 2014, 5, 225–232.
thermocouple-controlled hotplate and aluminum heating 43 J. L. Kurz, J. Am. Chem. Soc., 1967, 89, 3524–3528.
block. The heating block is half the height of the reaction 44 S. H. Hilal, L. L. Bornander and L. A. Carreira, QSAR Comb.
vials.
Sci., 2005, 24, 631–638.
25 I. Nieto, M. S. Livings, J. B. Sacci, L. E. Reuther, 45 O. Blum and D. Milstein, J. Organomet. Chem., 2000,
M. Zeller and E. T. Papish, Organometallics, 2011, 30, 6339–
6342.
26 S. Siek, D. B. Burks, D. L. Gerlach, G. Liang, J. M. Tesh,
593–594, 479–484.
46 N. A. Smythe, K. A. Grice, B. S. Williams and K. I. Goldberg,
Organometallics, 2009, 28, 277–288.
C. R. Thompson, F. Qu, J. E. Shankwitz, R. M. Vasquez, 47 O. Blum and D. Milstein, J. Am. Chem. Soc., 1995, 117,
N. Chambers, G. J. Szulczewski, D. B. Grotjahn, 4582–4594.
C. E. Webster and E. T. Papish, Organometallics, 2017, 36, 48 C. M. Fafard and O. V. Ozerov, Inorg. Chim. Acta, 2007, 360,
1091–1106. 286–292.
27 G. Zeng, S. Sakaki, K.-i. Fujita, H. Sano and R. Yamaguchi, 49 T. Bugarcic, A. Habtemariam, R. J. Deeth, F. P. Fabbiani,
ACS Catal., 2014, 4, 1010–1020.
28 R. Zhu, B. Wang, M. Cui, J. Deng, X. Li, Y. Ma and Y. Fu,
Green Chem., 2016, 18, 2029–2036.
29 R. Kawahara, K. Fujita and R. Yamaguchi, Angew. Chem.,
Int. Ed., 2012, 51, 12790–12794.
30 R. Kawahara, K. Fujita and R. Yamaguchi, J. Am. Chem.
Soc., 2012, 134, 3643–3646.
S. Parsons and P. J. Sadler, Inorg. Chem., 2009, 48, 9444–
9453.
50 X. Wu, J. Liu, D. Di Tommaso, J. A. Iggo, C. R. Catlow,
J. Bacsa and J. Xiao, Chem. – Eur. J., 2008, 14, 7699–7715.
51 C. Aliende, M. Pérez-Manrique, F. A. Jalón, B. R. Manzano,
A. M. Rodríguez and G. Espino, Organometallics, 2012, 31,
6106–6123.
This journal is © The Royal Society of Chemistry 2021
Green Chem., 2021, 23, 1609–1615 | 1615