Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC01779K
COMMUNICATION
JournalName
The remaining solution after catalytic reaction was analysed by
The authors are grateful to the European Union’s Horizon 2020
inductively coupled plasma (ICP) revealing a nickel content of research and innovation programme (ref. 677471), TERRA project
.008% with respect to all Ni initially introduced. Furthermore, no and the Ministerio de Economia y Competividad and the Fondo
0
evolution of the reaction was observed when the semi- Europeo de Desarrollo Regional FEDER (CTQ2016-75016-R,
hydrogenation of diphenylacetylene was tested using the remaining AEI/FEDER, UE) for funding.
solution of a catalytic test after filtration of the heterogeneous
catalyst. These results indicated that no relevant leaching had taken
Notes and references
place under the reaction conditions.
1
2
3
.
.
.
G. Schmid, Nanoparticles. From theory to applications.,
Weinheim, 2004.
A. Roucoux, J. Schulz and H. Patin, Chem. Rev., 2002, 102, 3757-
Next, we examined the application of the optimized catalyst
system for a broader scope of internal alkynes (Table 1, Entries 4-7).
When 4-octyne was tested as substrate (Entry 4), the corresponding
3
778.
(Z)-alkene was again obtained in quantitative yield. However, when
M. N. Hopkinson, C. Richter, M. Schedler and F. Glorius, Nature,
2014, 510, 485-496.
2-octyne was used (Entry 5), 81% conversion was measured and a
mixture of alkene and alkane was observed. However, the Z/E ratio 4. D. Canseco-Gonzalez, A. Petronilho, H. Mueller-Bunz, K.
Ohmatsu, T. Ooi and M. Albrecht, J. Am. Chem. Soc., 2013, 135,
remained at ca. 98%. In the case of 1-phenyl-1-butyne substrate, a
1
3193-13203.
greater amount of alkane was obtained (12%) at 100% conversion
and the selectivity Z/E was slightly lower (ca. 92%) (Entry 6). In the
hydrogenation of 3-phenyl-2-propyn-1-ol (Entry 7), the selective
5
6
.
.
E. C. Hurst, K. Wilson, I. J. S. Fairlamb and V. Chechik, New J.
Chem., 2009, 33, 1837-1840.
J. Vignolle and T. D. Tilley, Chem. Commun., 2009, 7230-7232.
formation of the (Z)-alkene was observed but 10% of the over- 7. A. V. Zhukhovitskiy, M. G. Mavros, T. Van Voorhis and J. A.
hydrogenated product was detected with full conversion.
Johnson, J. Am. Chem. Soc., 2013, 135, 7418-7421.
8
.
.
G. Wang, A. Ruhling, S. Amirjalayer, M. Knor, J. B. Ernst, C.
Richter, H.-J. Gao, A. Timmer, H.-Y. Gao, N. L. Doltsinis, F.
Glorius and H. Fuchs, Nat Chem, 2017, 9, 152-156.
K. V. S. Ranganath, J. Kloesges, A. H. Schaefer and F. Glorius,
Angew. Chem. Int. Ed., 2010, 49, 7786-7789.
2
To evaluate the robustness of these catalysts, the NiMe Im-0.5
NPs@CNTs was recycled several times in the hydrogenation of
diphenylacetylene as model substrate (Fig. 5). No relevant loss of
activity nor selectivity was observed over 3 runs although a slight
decrease in activity was observed in the last run.
9
1
1
0. L. S. Ott, M. L. Cline, M. Deetlefs, K. R. Seddon and R. G. Finke, J.
Am. Chem. Soc., 2005, 127, 5758-5759.
1. P. Lara, O. Rivada-Wheelaghan, S. Conejero, R. Poteau, K.
Philippot and B. Chaudret, Angew. Chem., Int. Ed., 2011, 50,
Conversion
Yield (E)-Stilbene
Yield (Z)-Stilbene
1
00
100
80
60
40
20
0
1
2080-12084.
8
6
4
2
0
0
0
0
0
1
1
2. L. M. Martinez-Prieto, A. Ferry, P. Lara, C. Richter, K. Philippot,
F. Glorius, B. Chaudret, Chem. Eur. J., 2015, 21, 17495-17502.
3. J.-F. Soule, H. Miyamura and S. Kobayashi, J. Am. Chem. Soc.,
2
013, 135, 10602-10605.
14. C. Richter, K. Schaepe, F. Glorius and B. J. Ravoo, Chem.
Commun. (Cambridge, U. K.), 2014, 50, 3204-3207.
15. A. M. Voutchkova, L. N. Appelhans, A. R. Chianese and R. H.
Crabtree, J. Am. Chem. Soc., 2005, 127, 17624-17625.
16. J. D. Holbrey, W. M. Reichert, I. Tkatchenko, E. Bouajila, O.
Walter, I. Tommasi, R. D. Rogers, Chem. Commun., 2003, 28-29.
1
1
1
2
3
4
Run
7. D. M. Denning, D. E. Falvey, J. Org. Chem., 2014, 79, 4293-4299.
8. J. G. de Vries and C. J. Elsevier, The Handbook of Homogeneous
Hydrogenation, Wiley-VCH, 2008.
Fig. 5 Recycling experiment of the hydrogenation of diphenylacetylene
over NiMe Im-0.5 NPs@CNTs at 50ºC, 5 bar H for 7h.
2
2
1
9. M. Crespo-Quesada, F. Cardenas-Lizana, A.-L. Dessimoz and L.
Kiwi-Minsker, ACS Catal., 2012, 2, 1773-1786.
In conclusion, a new procedure to synthesize small and
well defined NHC-stabilized NiNPs based on the 20. H. Konnerth and M. H. G. Prechtl, Chem. Commun., 2016, 52,
decarboxylation of the corresponding imidazolium carboxylate
9129-9132.
zwitterionic salt has been developed. This methodology was 21. A. Molnar, A. Sarkany and M. Varga, J. Mol. Catal. A: Chem.,
employed for the synthesis of colloidal NiNPs and for the
immobilization of NiNPs onto carbon nanotubes by a simple
2001, 173, 185-221.
2. E. Bayer and W. Schumann, J. Chem. Soc., Chem. Commun.,
2
2
2
1
986, 949-952.
“
one-pot” procedure without surface modification. These NPs
3. E. J. Garcia-Suarez, A. M. Balu, M. Tristany, A. B. Garcia, K.
Philippot and R. Luque, Green Chem., 2012, 14, 1434-1439.
4. P. Lara, L. M. Martinez-Prieto, M. Rosello-Merino, C. Richter, F.
Glorius, S. Conejero, K. Philippot and B. Chaudret, Nano-Struct.
Nano-Objects, 2016, 6, 39-45.
were thoroughly characterised and the supported NPs
revealed efficient catalysts in the selective hydrogenation of
terminal alkynes into the corresponding (Z)-alkenes under very
mild reaction conditions. Furthermore, these heterogeneous
catalysts can be readily recovered by simple filtration and
reused 3 times without relevant decrease in activity.
2
5. E. A. Baquero, S. Tricard, J. C. Flores, E. de Jesus and B.
Chaudret, Angew. Chem. Int. Ed., 2014, 53, 13220-13224.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins