Figure 2. Optimized structures of (a) 2 and (b) P(t-Bu)3 by HF/
6-31G(d)-CONFLEX/MM3.
Recently, Fu and Buchwald have shown that catalyst
systems with very basic and bulky phosphines are effective
in Suzuki-Miyaura coupling of unactivated aryl chlorides.7
Such bulky phosphines are also effective ligands in the
Mizoroki-Heck reaction of unactivated aryl chlorides.8
Actually, P(t-Bu)3 and tricyclohexylphosphine (PCy3) ef-
fectively worked as ligands in the coupling of 4-chlorotoluene
with phenylboronic acid in the presence of Pd(dba)2 with
Cs2CO3 as a base in dioxane at 80 °C7a as shown in Scheme
1. To evaluate the effectiveness of the BSP ligand in Suzuki-
Figure 1. Bowl-shaped phosphines.
lylation of ketone.2d,f During our continuous effort to explore
the efficacy of BSP as a ligand in transition-metal-catalyzed
reactions, we found a new efficiency of BSP and wish to
report that BSP is a highly effective ligand in the palladium-
catalyzed Suzuki-Miyaura coupling of unactivated aryl
chlorides.
The palladium-catalyzed Suzuki-Miyaura coupling is one
of the most important and versatile methods for construction
of carbon-carbon bonds.5 It is well-known that Suzuki-
Miyaura coupling is considerably affected by the nature of
the catalyst precursor, the added base, and solvent.5 There-
fore, the proper choice of reaction conditions is very impor-
tant to evaluate the effect of a ligand in Suzuki-Miyaura
coupling. In the present study, five BSP ligands (1-5 in
Figure 1) were employed. They are phosphines having
m-terphenyl (1-4) or the higher dendritic moieties (56).
Scheme 1
Miyaura coupling, we carried out the reaction with BSP
ligands under the same reaction conditions. The BSP ligand
1 having a m-terphenyl moiety without any substituents
afforded the product only in 2% yield. On the other hand,
the BSP ligands 2 and 4 bearing methyl substituents at the
2,2′′,6,6′′ positions of the m-terphenyl moiety and the BSP
ligand 5 bearing the higher dendritic moiety afforded the
product in much higher yields (75-91%). Thus, the BSPs
with the methyl substituents were found to be effective
ligands that are comparable to the very basic and bulky
phosphine (Scheme 1).
(3) For utilization of bowl-shaped molecules and moieties, see: (a)
Maverick, E.; Cram, D. J. ComprehensiVe Supramolecular Chemistry;
Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vo¨gtle, F., Eds.;
Elsevier: Oxford, UK, 1996; Vol. 2, pp 367-418. (b) Goto, K.; Okumura,
T.; Kawashima, T. Chem. Lett. 2001, 1258-1259. (c) Goto, K.; Nagahama,
M.; Mizushima, T.; Shimada, K.; Kawashima, T.; Okazaki, R. Org. Lett.
2001, 3, 3569-3572. (d) Naiki, M.; Shirakawa, S.; Kon-i, K.; Kondo, Y.;
Maruoka, K. Tetrahedron Lett. 2001, 42, 5467-5471.
(4) (a) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin,
K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
Revision C.02; Gaussian, Inc.: Wallingford CT, 2004. (b) Goto, H.; Osawa,
E. J. Am. Chem. Soc. 1989, 111, 8950-8951. Goto, H.; Osawa, E. J. Chem.
Soc., Perkin Trans. 2 1993, 187-198. (c) Halgren, T. A. J. Comput. Chem.
1999, 20, 720-729. (d) Halgren, T. A. J. Comput. Chem. 1996, 17, 490-
519.
The BSPs are still effective even at a lower reaction
temperature (50 °C) with KF as a base in THF7b (eq 1, Table
1). Although the BSP ligand 1 afforded the product only in
1% yield (entry 1), the BSP ligands 2, 3, 4, and 5 afforded
(6) The phosphine 5 and palladium(II) complexes bearing 5 were first
reported by Goto and Kawashima: Ohzu, Y.; Goto, K.; Sato, H.;
Kawashima, T. presented in part at The 49th Symposium on Organometallic
Chemistry, Japan, 2002; Abstr. No. PA110.
(7) (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387-
3388. (b) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122,
4020-4028. (c) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald,
S. L. J. Am. Chem. Soc. 2005, 127, 4685-4696. (d) Littke, A. F.; Fu, G.
C. Angew. Chem., Int. Ed. 2002, 41, 4176-4211 and references cited therein.
(e) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan,
S. P. J. Am. Chem. Soc. 2006, 128, 4101-4111.
(5) (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457-2483. (b)
Miyaura, N. Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A.,
Diederich, F., Eds.; Willy-VCH: Weinheim, Germany, 2004; Vol. 1, pp
41-123.
(8) (a) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 6989-
7000. (b) Littke, A. F.; Fu, G. C. J. Org. Chem. 1999, 64, 10-11.
90
Org. Lett., Vol. 9, No. 1, 2007