Communication
ChemComm
Fig. 3 Covalent labeling of vU-RhoBAST in RNA mixtures. (A) Denaturing PAGE gel (20%) analysis of individual and one-pot labeling of vU-modified active
55 nt) and inactive (elongated version, 67 nt) RhoBAST and vU-modified 39 mer (1 mM each) with TMR-Tz (1 mM) and Cy5-Tz (5 mM). (B) PAGE gel (10%) analysis
of labeling reactions of total RNA isolated from E. coli transcribing active and inactive RhoBAST aptamers. Bacteria were grown in the presence or absence of
(
ꢀ1
vU (2 mM). IEDDA reactions were performed using 50 mM TMR-Tz and 4 mg ml total RNA at 37 1C for 20 h (10 mg sample per lane).
1
9
rather low. Here, we cloned active and inactive RhoBAST
aptamers into a pET vector and transformed them into E. coli
BL21 (DE3). Then, the E. coli strains were grown in the presence
and absence of vU (2 mM), and total RNA was isolated. After
refolding of the RNA, we incubated the samples with TMR-Tz
and performed PAGE analysis using in-gel fluorescence and
EtBr staining (Fig. 3B). For total RNA samples extracted from
E. coli growing in the absence of vU (negative control), no
fluorescent signal was observed, whereas in the isolated RNA
samples from E. coli growing in presence of vU, only one distinct
band was detected for the sample containing the active RhoBAST
aptamers. This fluorescent band showed the same mobility on the
2 S. S. Gallagher, J. E. Sable, M. P. Sheetz and V. W. Cornish,
ACS Chem. Biol., 2009, 4, 547–556.
3
M. Sunbul, L. Nacheva and A. J ¨a schke, Bioconjugate Chem., 2015, 26,
466–1469.
1
4 M. Ghaem Maghami, C. P. M. Scheitl and C. H o¨ bartner, J. Am. Chem.
Soc., 2019, 141, 19546–19549.
R. I. McDonald, J. P. Guilinger, S. Mukherji, E. A. Curtis, W. I. Lee
and D. R. Liu, Nat. Chem. Biol., 2014, 10, 1049.
6 A. K. Sharma, J. J. Plant, A. E. Rangel, K. N. Meek, A. J. Anamisis,
5
J. Hollien and J. M. Heemstra, ACS Chem. Biol., 2014, 9,
1
680–1684.
D. Schulz and A. Rentmeister, ChemBioChem, 2014, 15, 2342–2347.
8 J. M. Holstein, D. Schulz and A. Rentmeister, Chem. Commun., 2014,
0, 4478–4481.
J. M. Holstein, D. Stummer and A. Rentmeister, Chem. Sci., 2015, 6,
362–1369.
7
5
9
1
PAGE gel as the in vivo transcribed and ethidium bromide stained 10 M.-L. Winz, A. Samanta, D. Benzinger and A. J ¨a schke, Nucleic Acids
Res., 2012, 40, e78.
1 F. Li, J. Dong, X. Hu, W. Gong, J. Li, J. Shen, H. Tian and J. Wang,
Angew. Chem., Int. Ed., 2015, 54, 4597–4602.
12 S. C. Alexander, K. N. Busby, C. M. Cole, C. Y. Zhou and
N. K. Devaraj, J. Am. Chem. Soc., 2015, 137, 12756–12759.
3 J. D. Vaught, T. Dewey and B. E. Eaton, J. Am. Chem. Soc., 2004, 126,
RhoBAST. In contrast, no signal was detected for the inactive
RhoBAST sample, demonstrating the specific labeling of RhoBAST
in in vivo transcribed complex RNA mixtures.
In conclusion, we described the first application of in vitro
selected RNA aptamers to increase the reaction rate of a biortho-
1
1
11231–11237.
gonal IEDDA reaction by proximity effects. We could clearly 14 N. Milisavljevi ˇc , P. Perl ´ı kov ´a , R. Pohl and M. Hocek, Org. Biomol.
Chem., 2018, 16, 5800–5807.
demonstrate that the over 30-fold reactivity increase is due to the
specific interaction between aptamer and target. This novel princi-
1
5 J. T. George and S. G. Srivatsan, Bioconjugate Chem., 2017, 28,
529–1536.
ple enabled us to specifically label an in vitro or in vivo transcribed 16 P. Asare-Okai, E. Agustin, D. Fabris and M. Royzen, Chem. Commun.,
1
2
014, 50, 7844–7847.
7 C. Y. Jao and A. Salic, Proc. Natl. Acad. Sci. U. S. A., 2008, 105,
5779–15784.
ROI in a mixture of modified RNAs. However, for wide-spread
practical application as a covalent labeling tool the reaction rate
must be increased significantly without sacrificing selectivity.
Open Access funding provided by the Max Planck Society.
1
1
18 S. Nainar, S. Beasley, M. Fazio, M. Kubota, N. Dai, I. R. Corr ˆe a Jr and
R. C. Spitale, ChemBioChem, 2016, 17, 2149–2152.
9 M. Kubota, S. Nainar, S. M. Parker, W. England, F. Furche and
R. C. Spitale, ACS Chem. Biol., 2019, 14, 1698–1707.
1
2
0 M. Sunbul, J. Lackner, A. Martin, D. Englert, B. Hacene, F. Gr u¨ n,
K. Nienhaus, G. U. Nienhaus and A. Ja
DOI: 10.1038/s41587-020-00794-3.
¨
schke, Nat. Biotechnol., 2021,
Conflicts of interest
2
2
2
1 B. Oliveira, Z. Guo and G. Bernardes, Chem. Soc. Rev., 2017, 46,
895–4950.
2 M. Flamme, L. K. McKenzie, I. Sarac and M. Hollenstein,
Methods, 2019, 161, 64–82.
3 P. Werther, J. S. M o¨ hler and R. Wombacher, Chem. – Eur. J., 2017,
23, 18216–18224.
There are no conflicts to declare.
4
Notes and references
1
S. Tsukiji, M. Miyagawa, Y. Takaoka, T. Tamura and I. Hamachi,
Nat. Chem. Biol., 2009, 5, 341–343.
24 M. Sunbul and A. J ¨a schke, Nucleic Acids Res., 2018, 46, e110.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 3480–3483 | 3483